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Abstract

I causally estimate spatial knowledge spillovers in Research and Development (R&D)
and quantify their importance for R&D policies. Using a new administrative panel on
German inventors, I estimate these spillovers by isolating quasi-exogenous variation
from the arrival of East German inventors across West Germany after the Reunifica-
tion of Germany in 1990. I find that increasing the number of inventors working in
a technological cluster by 10% leads to average inventor productivity gains of 4.09%.
After embedding these spillovers into a spatial model of innovation, the model predicts
that reducing inventor migration costs increases aggregate output significantly, and
that the effectiveness of this policy increases with the degree of spillovers. The model
also predicts that R&D subsidies should be place-based, and increasing with location
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Introduction

Research and Development (R&D) is crucial for aggregate productivity due to its direct

impact on innovation. At the same time, R&D exhibits substantially higher levels of spatial

concentration than overall economic activity. For example, in 2014 in West Germany, a

worldwide innovation powerhouse (WEF, 2018), around 30% of mechanical engineers worked

in the top three cities in this profession. In comparison, only around 18% of workers located

in the three most populated cities. Since Marshall (1890), agglomeration economies—spatial

and inter-temporal knowledge spillovers, labor pooling, and customer-supplier linkages—

are the core explanation for why economic activity concentrates. Nevertheless, the extent,

causes and consequences of local knowledge spillovers in R&D—local productivity gains from

the agglomeration of R&D activity—remain elusive. In this paper, I address the following

research questions: (i) is there evidence of local knowledge spillovers in R&D? and (ii) are

they quantitatively important for aggregate productivity when implementing R&D policies?

Addressing these questions is crucial to implement policies that promote economic activ-

ity through R&D. Governments around the world implement a variety of policies—reducing

mobility or transportation costs, formation of economic clusters, among others—that lever-

age knowledge spillovers for their effectiveness (Feldman and Kelley, 2006). In particular,

policies that promote R&D rely strongly on the local knowledge spillovers in this sector

(Trajtenberg, 2001). Moreover, implementing these policies can generate general equilib-

rium effects due to the internal mobility of agents. Therefore, the design of policies that

promote R&D activities requires both well-identified estimates of local knowledge spillovers

in R&D, and a quantitative framework that accounts for these spillovers in general equi-

librium. In this paper, I provide such estimates and framework, and apply them to study

policies that promote R&D activities in Germany.

In this paper, I show that local knowledge spillovers in R&D are large and important for

aggregate productivity. First, using new data on German inventors, I causally estimate such

spillovers by isolating quasi-exogenous variation from the arrival of East German inventors
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across West Germany after the Reunification of Germany in 1990. I find that a 10% increase

in the number of inventors in a location leads to average inventor productivity gains of

around 4.09%. Second, I build a quantitative spatial model of innovation that account for

the local knowledge spillovers in R&D I estimated in the data. Third, I calibrate the model

and use it to quantify the productivity gains from implementing policies that promote R&D

activities. I find that a 25% reduction of migration costs for inventors increases aggregate

productivity by 5.87%, and that the 25% subsidy for firms’ expenditures in R&D within

the 2020 German R&D Tax Allowance Act would increase aggregate productivity by 4.27%.

Finally, the productivity gains from these policies increase with the level of local knowledge

spillovers in R&D. I now describe each of these steps in detail.

In the first part of the paper, I estimate the additional productivity that inventors gain

from agglomerating. To perform this task, I leverage a matched administrative data on

German inventors between 1980 and 2014. This data exhibits two features that makes it

suitable for this paper. First, the dataset includes all the patents and their characteristics

that inventors filed over time, so I can calculate the total number of forward citations of

inventor’s filed patents during a given period—inventor productivity—Second, the dataset

tracks how inventors move across locations over time, so I can calculate cluster size as the

number of inventors working in a given technological cluster, where a cluster is a technological

area-location pair. An example of a cluster is mechanical engineering in Munich.

Then, I leverage variation in cluster size and inventor productivity to estimate the local

knowledge spillovers in R&D; that is, whether a higher concentration of inventors leads

to more productive inventors due to local knowledge spillovers.1 The analysis compares

inventors that moved to clusters of different sizes, and inventors that did not move but the

number of inventors in the cluster changed. After saturating the model with a large set of

fixed effects, I find that a 10% increase in cluster size is associated with average inventor

productivity gains of around 1.75%. This elasticity is statistically significant at the 1%,

1Examples of how these spillovers manifest in the real world are interactions and exchange of ideas between
inventors (Davis and Dingel, 2019).
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and its significance is robust to different specifications of inventor productivity and time

aggregation.

I then address potential endogeneity concerns that potentially biases when estimating

local knowledge spillovers in R&D. For example, unobserved inventor idiosyncratic shocks

could induce upward or downward biases. For example, if novice inventors systematically

sort into large clusters, then spillovers estimates would suffer from downward biases. Also,

unobserved cluster shocks could induce upward biases. For example, growth expectations in

a technological cluster could increase both the productivity of inventors in that cluster and

pull inventors into the cluster, and therefore induce an upward bias. Finally, measurement

error could also introduce a downward bias.

To address these concerns, I propose an instrumental variable based on the historical

episode of the Reunification of Germany in 1990. In particular, I leverage this natural ex-

periment to construct a shift-share instrument that induces quasi-exogenous variation in

the size of West German clusters, which I then use to causally estimate local knowledge

spillovers in R&D. The “shifts” are leave-out shocks that measure the total number of in-

ventors that moved from each location in East Germany towards any West German cluster,

except to the instrumented cluster. The identification assumption is that these shocks are

as-good-as-randomly assigned (Borusyak et al., 2022); that is, the shifts are uncorrelated

with unobservables within the instrumented cluster. The strategy of leaving out the instru-

mented cluster from the construction of the shifts ensures that the shocks are constructed

based solely on push factors arising from the East, and not from pull factors coming from

the instrumented cluster. These shocks are then weighted by exposure “shares” that help

predicting the number of inventors that move from each East German location to each West

German cluster. These shares are constructed based on the inverse of the geographic dis-

tance between every location between East and West Germany, and the specialization of

each location in East Germany in each technological area. Under this approach, a 10% in-

crease in cluster size leads to average inventor productivity gains of around 4.09%. These
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spillovers are statistically significant at the 5%, and their significance is robust to different

measurements and functional forms for inventor productivity and time aggregation.

In the second part of the paper, to quantify the importance of these spillovers to imple-

ment R&D policies, I build a quantitative model of innovation. In each location, a represen-

tative firm produces a final good that is consumed locally and is produced by aggregating

intermediate inputs from all locations. Each intermediate input is produced by a single firm

in each location. Firms hire workers that produce the input, and inventors that engage in

R&D. In the model, R&D determines the quality of an input, where firm’s inventors generate

ideas heterogeneous in productivity, which are then implemented into the firm’s blueprint to

produce the input at a given quality.

Then, each firm optimally decides how many workers and inventors to hire subject to

the demand of its input and its quality. When the firm decides how many inventors to hire,

I show that the quality of an input is comprised by the number of ideas a firm’s inventors

generated, and by how productive these ideas are in expectation. For the first part of input

quality, I assume decreasing returns to R&D, so only a subset of firm’s inventors generate

ideas. This is a valid and necessary assumption since I estimate it in the data, and it is the

congestion force that rules out an equilibrium where all inventors move to a single location.

For the second part of input quality, following the evidence on local knowledge spillovers in

R&D and distributional assumptions on the process on how inventors generate ideas, I show

that the expected productivity of firms inventors’ ideas increases with the local knowledge

spillovers in R&D in a location.

Finally, I also allow for labor mobility, so workers and inventors choose where to work

according to real wages, amenities, and migration costs. And finally, the model allows

for straightforward aggregation where aggregate productivity is endogenously determined

in general equilibrium. The main prediction of the model is that a location’s productivity

is endogenously determined by three forces. First, locations with better production funda-

mentals or that hold more inventors are more productive due to local knowledge spillovers
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in R&D. Second, locations that exhibit higher labor costs are less productive since firms

are less able to hire inventors to innovate. Third, locations with higher market access are

more productive since higher demand from other locations increases firms’ profitability, and

therefore their incentive to invest in R&D. All these forces shape location’s productivity

in general equilibrium. Additionally, the model predicts that a location’s productivity acts

as an agglomeration force for overall economic activity. Since a location’s productivity is

determined by the its number of inventors, then locations with more inventors exhibit larger

shares in locations’ expenditure of intermediate inputs.

In the third part of the paper, I calibrate the model and use it to conduct policy coun-

terfactuals and quantify the importance of local knowledge spillovers in R&D for aggregate

productivity. I now describe how I discipline the model. First, the model generates an

expression that establishes a relationship between inventor productivity and cluster size.

This expression is the model counterpart of the specification I used to causally estimate

local knowledge spillovers in R&D in the data. Then, I can directly import the estimated

spillovers into the model. Second, I estimate firm-level decreasing returns to R&D by regress-

ing the number of firm’s inventors that filed a patent against the number of hired inventors

by the firm. I find an elasticity of 0.65, which confirms the existence of firm-level decreas-

ing returns to R&D. Third, I calibrate migration costs by targeting overall migration rates

and estimating migration cost elasticities for both workers and inventors. Finally, I follow

Redding (2016) and use aggregate data on wages and the number of workers and inventors

across locations to recover unobserved fundamental location productivities and amenities.

After calibrating the model, I conduct counterfactuals to quantify the effect of policies

that promote R&D activities on aggregate productivity, and the importance of local knowl-

edge spillovers in R&D for the effectiveness of these policies. First, I simulate a supply-side

policy of reducing inventor migration costs by 25%. I find that this reduction leads to a

5.87% increase in aggregate productivity. Since the total number of inventors is finite, the

policy exhibits substantial heterogeneous effects across locations. I find that the increase
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in aggregate productivity arises from inventors moving from larger towards smaller clusters

in pursue of higher real wages, so the policy reduces the spatial concentration of inventors.

Second, I simulate a demand-side policy of a 25% subsidy for firms’ R&D expenditure from

the 2020 German R&D Tax Allowance Act. I find that this subsidy leads to a 4.27% increase

in aggregate productivity. In contrast the reduction of inventor migration costs, all locations

increase their productivity and the spatial concentration of inventors increases, so larger

clusters exhibit higher productivity gains. Finally, I show that local knowledge spillovers in

R&D are important for the effectiveness of these policies to foster aggregate productivity.

Literature. This paper contributes to three literature strands. First, this paper contributes

to the empirical literature on local knowledge spillovers (Griliches, 1991; Jaffe et al., 1993;

Audretsch and Feldman, 1996; Jaffe et al., 2000; Thompson, 2006; Carlino et al., 2007;

Combes et al., 2010; Greenstone et al., 2010; Bloom et al., 2013; Kerr and Kominers, 2015;

Kantor and Whalley, 2019; Moretti, 2021; Gruber et al., 2022). This literature largely

focuses on the agglomeration of economic activity, and the positive externalities arising from

it. More recently, Moretti (2021) focused in R&D and estimated local knowledge spillovers

for inventors. I contribute to this literature by exploiting a historical natural experiment to

causally estimate local knowledge spillovers in R&D.

Second, this paper contributes to the literature on the importance of knowledge spillovers

for innovation. This is a vast literature with contributions from urban economics (Eaton

and Eckstein, 1997; Glaeser, 1999; Black and Henderson, 1999; Kelly and Hageman, 1999;

Duranton and Puga, 2001; Duranton, 2007; Roca and Puga, 2017; Duranton and Puga,

2019; Davis and Dingel, 2019), trade (Ramondo et al., 2016; Hallak and Sivadasan, 2013;

Atkeson and Burstein, 2010; Melitz, 2003; Eaton and Kortum, 2002; Krugman, 1980; Akcigit

et al., 2021), and spatial economics Desmet and Rossi-Hansberg (2014); Desmet et al. (2018);

Nagy et al. (2016); Mestieri et al. (2021); Williams (2023); Crews (2023). I contribute to this

literature by building a quantitative framework that explicitly accounts for local knowledge
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spillovers in R&D I estimate in the data.

Third, this paper contributes to the literature on policies that promote economic growth.

On one side, labor mobility can have aggregate implications both in the data (Borjas and

Doran, 2012; Burchardi and Hassan, 2013; Moser et al., 2014; Peri et al., 2015; Bosetti

et al., 2015; Bahar et al., 2020; Burchardi et al., 2020) and in quantitative settings Monras

(2018); Bryan and Morten (2019); Peters (2022); Arkolakis et al. (2020); Jaworski et al.

(2020); Pellegrina and Sotelo (2021); Prato (2021). I contribute by showing the aggregate

importance of reducing of migration costs for inventors. This is a significant departure

from previous quantitative frameworks which do not focus on inventors explicitly.2 On the

other side, R&D policies can promote aggregate innovation Goolsbee (1998); Romer (2000);

Wilson (2009); Acemoglu et al. (2018); Koehler (2018); Akcigit et al. (2021). I contribute

by providing a framework that allows policy makers to evaluate the aggregate implications

of R&D implications in general equilibrium.

The remainder of this paper is structured as follows. Section 1 explains how I estimate

local knowledge spillovers in R&D. Section 2 describes the model. Section 3 maps the model

to the data. Section 4 presents the results of the counterfactuals. Section 5 concludes.

1 Local Knowledge Spillovers in R&D

In this section I describe the estimation of local knowledge spillovers in R&D. The first part of

this section describes the data, the second part explains the estimation strategy, and the third

part discusses assumptions and results throughout this section. Appendices A-B contain

additional tables and figures. Further details about the data are in the Supplementary

Appendix.

2A notable exception is Koike-Mori et al. (2023)
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1.1 Data sources

Linked Inventor Biography (INV-BIO). The main dataset in this paper is the INV-BIO

by the Research Data Centre of the German Federal Employment Agency at the Institute

for Employment Research (FDZ-IAB). The INV-BIO is an administrative dataset comprised

by approximately 150, 000 German inventors with high–frequency and detailed information

on their employment spells and patenting activities between 1980 and 2014. The INV-BIO

is comprised by three modules: (i) an inventor-level module that includes data on inventors’

job spells; (ii) an establishment-level module with yearly characteristics of inventors’ estab-

lishments; and (iii) a patent-level module with information on German inventors’ patents.

Sample of Integrated Employer-Employee Data (SIEED). The FDZ-IAB’s SIEED is a

1.5% sample of all establishments in Germany between 1975 and 2018. The dataset tracks

establishments’ characteristics over time, and establishments’ employees’ spells over the en-

tire period. I use this complementary dataset to compare the spatial concentration of workers

to inventors, and to construct aggregate variables I later use to estimate the model.

1.2 Construction of variables.

Dimensions. From the INV-BIO modules I construct an unbalanced panel dataset of in-

ventors. An observation in the data is an inventor i working for establishment ω in location

d in technological area a during period t. I focus my analysis on West Germany, which is

comprised by 104 labor markets. A labor market is defined based on commuting patterns be-

tween districts (Kosfeld and Werner, 2012), and are the equivalent to US commuting zones.

Finally, to estimate long run estimates of local knowledge spillovers in R&D, I stack the data

in three 10-year periods: (i) 1982-1991, (ii) 1992-2001, and (iii) 2002-2011.3

3I also consider six 5-year periods to estimate shorter run local knowledge spillovers in R&D: (i) 1982-1986,
(ii) 1987-1991, (iii) 1992-1996, (iv) 1997-2001, (v) 2002-2006, and (vi) 2007-2011.

9



West German technological clusters. I define a technological cluster as a technological

area-location pair. For example, “Mechanical engineering” in “Munich” is a cluster in West

Germany. There are 5 technological areas in the data: (i) Electrical engineering, (ii) Instru-

ments, (iii) Chemistry, (iv) Mechanical Engineering, and (v) Others. Then, locations and

technological areas comprise 104× 5 = 520 (d, a) technological clusters.

Inventor’s cluster. To define an inventor’s cluster at a given period, it is necessary to

determine the inventor’s location and the technological area the inventor works in. First, the

location of an inventor is determined by the location of the inventor’s establishment since

knowledge spillovers arguably happen mostly at the workplace. Additionally, since I consider

establishments and not multi-location firms, the location of the inventor is unique. Second,

an inventor belongs to the technological area for which he filed the highest share of patents

during a given period. For example, if between 1982 and 1991, an inventor filed 80% of his

patents in Chemistry, then he belongs to that technological area.

A data limitation is that inventors do not necessarily file patents every period. This

generates sample selection, since only inventors that filed a patent during a given period

are registered in the data. The main problem arising from this limitation is that it is not

straightforward to assign a cluster to an inventor that did not file a patent during a given

period. To address this problem, if an inventor did not file a patent during a given period,

I assume that an inventor’s cluster did not change since since the last time an inventor filed

a patent. For example, if in 1995 the latest patent an inventor filed was a Chemistry patent

in Dusseldorf in 1993, then I assume that in 1994-1995 the inventor kept working in the

Chemistry/Dusseldorf cluster. This is a safe assumption since establishments rarely change

locations and inventors tend to specialize in technological areas.

Inventor productivity and cluster size. To test for local knowledge spillovers in R&D, I

construct two main variables. First, I measure inventor productivity Ziω
da,t as the total number

of 5-year forward citations of inventor i’s filled patents during period t by the German Patent

10



and Trade Mark Office (DPMA, due to its name in German). If an inventor did not file a

patent during period t, then Ziω
da,t = 0. Second, I measure cluster size Rda,t as the number of

inventors working in cluster (d, a) at the end of period t.

Additional variables. I construct four additional variables I use for both the estimation of

local knowledge spillovers in R&D in Section 1.3 and model calibration in Section 3. First, I

measure the distance between every location pair distod as the Euclidean distance (in miles)

between the centroids of every labor market in Germany. The district maps were downloaded

from the Federal Agency for Cartography and Geodesy, and the correspondence between

districts and labor markets is given by Kosfeld and Werner (2012). Second, I measure the

technological composition of every location, TechCompda, by calculating location d’s share

of filed patents in technological area a such that
∑

a TechCompda = 1,∀d. Third, I measure

migration shares during a given period between every location pair
{
ηLod,t, η

R
od,t

}
for workers

and inventors, respectively. Fourth, I measure average wages in a given period for every

location
{
wL

o,t, w
R
o,t

}
for workers and inventors, respectively.

1.3 Estimation

1.3.1 OLS estimates

To measure local knowledge spillovers in R&D, I consider the following specification between

inventor productivity Ziω
da,t and cluster size Rda,t:

log
(
Ziω
da,t

)
= ιd,t + ιa,t + ιda + ιω + ιi + β log (Rda,t) + ϵiωda,t. (1)

If there are local knowledge spillovers in R&D, then β > 0. I saturate the model with a

large set of fixed effects. ιd,t are location/period fixed effects that account for amenities and

location shocks that drive the overall activity of a location. ιa,t are technological area/period

fixed effects that account for overall technological shocks. ιda are cluster fixed effects that

account for time-invariant cluster productivity, and for the fact that some clusters file more
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patents than others in average. ιω are establishment fixed effects that account for inventor

sorting due to time-invariante establishment productivity. ιi are inventor fixed effects that

control for inventor sorting due to time-invariant inventor productivity. In all specifications,

standard errors are clustered at the (d, a) level. The identification assumption is that inventor

unobservables ϵiωda,t are uncorrelated with cluster size Rda,t.

The main measurement challenge is to account for zeros in the dependent variable Ziω
da,t. I

consider log
(
1 + Ziω

da,t

)
as the dependent variable for the main specifications. Table 1 report

the OLS estimates of Equation (1). Columns (1) − (6) show the value of the estimated

spillovers as I progressively include the aforementioned fixed effects. The value of these

estimates remain around 0.12. Column (6) reports the main OLS estimate that includes

inventors fixed effects, which is key to compare a given inventor across periods and clusters.

This estimate indicates that an inventor whose cluster size increased by 10% or moved to a

cluster with 10% more inventors reports productivity gains of 1.75% in average.

Table 1: OLS models

(1) (2) (3) (4) (5) (6)
log (Rda,t) 0.0705 0.111 0.0985 0.109 0.0896 0.175

(0.0256) (0.0170) (0.0166) (0.0385) (0.0358) (0.0660)

ιd,t ✓ ✓ ✓ ✓ ✓
ιa,t ✓ ✓ ✓ ✓
ιda ✓ ✓ ✓
ιω ✓ ✓
ιi ✓
N 177, 301 177, 300 177, 300 177, 294 162, 803 84, 639
R2 0.008 0.053 0.064 0.079 0.246 0.700

Notes: In this Table I report OLS estimates from Equation (1). The dependent variable is measured as log
(
1 + Ziω

da,t

)
, and

Ziω
da,t is the number of 5-year forward citations from the DPMA. The table is comprised by 6 columns. Each column corresponds

to a different combination of fixed effects, as pointed out by rows 4−8. Row 2 reports the estimate of β. Row 3 reports standard
errors clustered at the (d, a) level. Rows 9− 10 report the number of observations and the goodness of fit, respectively.

Robustness. Table A.2 contains the estimated spillovers under different specifications of

inventor productivity. Since column (6) is the main specification in Table 1 I focus the

robustness discussion around this specification. Panel A shows results when patent citations
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arose from the European Patent Office (EPO) and the EU (both the DPMA and EPO),

respectively. Under these specifications, column (6) shows that the elasticities of inventor

productivity to cluster size are 0.173 and 0.245, respectively. These spillovers are comparable

to the ones reported in Table 1. Panel B shows results when I account for zeros by using

the Inverse Hyperbolic Sine (IHS) for inventor citations instead of log (1 + Z). Column (6)

shows that the elasticity of inventor productivity to cluster size is 0.217, which is similar to

the baseline estimate of 0.175. Additionally, when patent citations arose from the EPO and

the EU, elasticities are around 0.21− 0.24.

Finally, results also hold under shorter time horizons. In Table A.3, I show the estimated

spillovers when the frequency of the data is 5-year periods, where the first row measures

inventor productivity as log (1 + Z), and the third row measures it as IHS (x). In both cases,

column (6) shows that the spillovers are around 0.1, so the magnitude of local knowledge

spillovers in R&D scale with the frequency of the data. The intuition for these results is that

longer time horizons allow for larger spillovers to manifest in the data.

1.3.2 IV approach

Endogeneity concerns. To causally estimate β from Equation (1), the key identification

assumption is that the unobservables ϵiωda,t are uncorrelated to cluster size Rda,t. Nevertheless,

there are at least two endogeneity concerns that could potentially violate this assumption.

First, unobserved time-varying idiosyncratic shocks can bias the estimate of β. For example,

inventors can decide to start working in a given technological area due to unobservable

reasons. If inventors at the beginning of their careers in a given technology, who initially

report low productivity, move to large clusters due to better career prospects, this would

introduce a downward bias on β. On the other side, if inventors at the peak of their careers

in a given technology, who report high productivity, move to large clusters due to even better

career prospects, this would introduce an upward bias on β.

Second, unobserved time-varying cluster-level shocks can introduce an upward bias when
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estimating β. For example, a sudden increase in growth expectations for Chemistry in Dus-

seldorf could increase both cluster size due to an inflow of inventors towards that cluster, and

inventor productivity in that cluster, introducing an upward bias on β. Finally, measurement

error could also bias the estimate of β downwards. To address these endogeneity concerns,

I then propose an instrumental variable approach to causally estimate β. In summary, I

leverage quasi-exogenous variation in cluster size arising from the arrival of East German

inventors towards West German clusters during the Reunification of Germany in 1990.

Brief historical background: The Reunification of Germany. During the final phase of

World War II, the Potsdam Agreement was signed between the US, the UK, and the USSR

on August 1st 1945. Part of this agreement was the division of Germany in two main blocs:

(i) the Federal Republic of Germany (FRG, also known as “West Germany”), and (ii) the

German Democratic Republic (GDR, also known as “East Germany”). FRG was based

on liberal economic-social institutions from the West, while GDR was based on socialist

institutions from the ex-Soviet Union.

In 1952, the borders between East and West Germany were well-established. Never-

theless, migration was still allowed between the two blocs. This lasted until 1961, when

migration between these two blocs ceased. Then, in October 3rd 1990, the GDR was dis-

solved and the process to reunify Germany began. During this period, the “Exodus to the

West” started, where a large number of East Germans migrated to the West. Figure A.2

plots the magnitude of this shock, which was considered to be unexpected and be permanent

at the time. Since inventors from East Germany also moved to the West (Hoisl et al., 2016),

I use the variation arising from the arrival of East German inventors across West German

clusters.

IV estimates. To motivate the design of my instrument, consider an ideal experiment to

causally estimate local knowledge spillovers in R&D. In this thought experiment, I would

randomize inventors’ clusters in West Germany, such that productivity gains arising from
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changes in cluster size can be estimated. Since it is not possible to obtain such exogenous

variation, I extract quasi-exogenous variation in cluster size from the Reunification of Ger-

many. To do this, I construct a shift-share instrument based on the arrival of East German

inventors across West German clusters. If the variation in cluster size arising from the over-

all arrival of East German inventors is as-good-as-random, then this is sufficient to causally

estimate local knowledge spillovers in R&D. First, I use variation in the arrival of inventors

towards West German clusters, so the second stage regression in first differences of Equation

(1) is

∆ log
(
Ziω
da,t

)
= ιd,t + ιa,t + β∆ log (Rda,t) + ∆ϵiωda,t. (2)

Notice that the fixed effects in Equation (2) that prevail after introducing first-differences

are location/period ιd,t and technological area/period ιa,t fixed effects. ιd,t are crucial to

control for the overall arrival of East Germans to West German locations during the Reunifi-

cation. Also, ιa,t accounts for overall technological change that could have happened during

Reunification. Now, the first stage regression is a shift-share instrument:

IVda,t =
∑
o∈E

go,t × so,da, (3)

where o ∈ E is location o in East Germany (E), and d is a location in West Germany. The

instrument is constructed as the interaction of two terms: (i) a common set of shocks to West

German clusters go,t (i.e. the “shifts”); and (ii) a set of exposure weights to these shocks so,da

(i.e. the“shares”). The shifts go,t ≡ log
(
∆R−d,−a

o,t

)
are the log of the number of inventors in o

that moved to any West German cluster except the instrumented cluster (d, a) during period

t. Following Borusyak et al. (2022), the identification assumption to estimate β is that the

overall arrival of East German inventors in West Germany go,t excluding the instrumented

cluster is as-good-as-random. That is, the shifts are uncorrelated with inventor unobservables

within the instrumented cluster. This is a safe assumption since the instrumented cluster

is being left out to construct each shift, so the shifts are constructed based solely on push
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factors arising from each East German location, and are clean from pull factors coming from

the instrumented cluster.

The shifts are then weighted by exposure shares, which help predicting how many in-

ventors from each East German cluster will move to each West German cluster. The shares

so,da ≡ dist−1
o,d × TechCompo,a are comprised by two terms: (i) dist−1

o,d is the inverse distance

between o and d; and (ii) TechCompo,a is the technological composition of location o. The

construction of these variables is detailed in Section 1.2. The intuition of the shares is the

following. First, migration flows decay with distance, so locations closer to each other should

exhibit higher migration shares. This is consistent with Hoisl et al. (2016) who find that

distance was indeed a key predictor for the migration from the East to the West. Second,

the specialization of East German locations towards different technologies predicting which

technological area an East German inventor will work on upon moving to the West. The

shares are then normalized such that
∑

o∈E so,da = 1,∀d, a.

Table 2 contains the IV estimates of local knowledge spillovers in R&D. All the estimates

exhibit an F-statistic above 10, which reflects the relevance of the proposed instrument.

Column (1) reports the estimate of the spillovers when I do not consider any fixed effects.

This reports a value of 0.178 which is similar to the OLS estimate from column (6) in Table

(1). It is crucial to include location-period fixed effects to account for the overall arrival

of East Germans to West Germany. In column (2) I show that estimated spillovers after

including these fixed effects are 0.309. Finally, it is also key to include technological area-

period fixed effects to control for technological changes after the Reunification. Column (3)

contains the main empirical result of this paper: an inventor whose cluster size increases

by 10% or moved to a cluster with 10% more inventors becomes 4.09% more productive in

average. This estimate is between 2 and 3 times the OLS estimate of 1.75% from column (6)

in Table (1), which reflects a downward bias when estimating β due to unobservables and

measurement error.
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Table 2: IV models

(1) (2) (3)
∆ log (Rda,t) 0.178 0.309 0.409

(0.0431) (0.101) (0.152)

ιd,t ✓ ✓
ιa,t ✓

KP − F 132.1 34.14 28.23
N 50, 778 50, 776 50, 776

Notes: In this Table I report IV estimates from Equation (2), where the instrument is constructed as in Equation (3). The

dependent variable is measured as ∆ log
(
1 + Ziω

da,t

)
, and Ziω

da,t is the number of 5-year forward citations from the DPMA. The

table is comprised by 4 columns. Each column corresponds to a different combination of fixed effects, as pointed out by rows
5−6. The fourth column reports the OLS estimate from Equation (2). Row 3 reports the estimate of β. Row 4 reports standard
errors clustered at the (d, a) level. Rows 7 − 8 report the first stage Kleibergen-Paap F-statistic (KP-F) and the number of
observations, respectively.

Robustness. Table A.4 contains the estimated spillovers under different specifications of

inventor productivity. Since column (3) is the main specification in Table 2, I focus the

robustness discussion around this specification. Panel A shows results when patent citations

arose from the EPO and the EU, respectively. Under these specifications, column (3) shows

that the elasticities of inventor productivity to cluster size are 0.209 and 0.343, respectively.

These spillovers are comparable but somewhat lower to the ones reported in Table 2. Panel

B shows results when I account for zeros by using the IHS for inventor citations instead of

log (1 + Z). Column (3) shows that the elasticity of inventor productivity to cluster size is

0.498. Additionally, when patent citations arose from the EPO and the EU, elasticities are

around 0.23− 0.39.

Finally, results also hold under shorter time horizons. In Table A.5 I show the estimated

spillovers when the frequency of the data is 5-year periods, where the first row measures

inventor productivity as ∆ log (1 + Z), and the third row measures it as ∆IHS (x). In

both cases, column (3) shows that the spillovers are around 0.09, so the magnitude of local

knowledge spillovers in R&D scale with the frequency of the data. The intuition for these

results is that longer time horizons allow for larger spillovers to manifest in the data.
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1.4 Discussions

Do citations measure productivity? Throughout this paper, I have measured inventor pro-

ductivity as the number of forward citations of all inventor’s filed patents during a given

period. Then, it is reasonable to pose whether number of citations indeed measure produc-

tivity. There is a vast literature that documents a positive relationship between number of

citations and proxies for productivity, such as patent value (Kogan et al., 2017; Hall et al.,

2001; Harhoff et al., 1999; Trajtenberg, 1990).

More recently, Abrams et al. (2013) find preliminary evidence of a inverse U-shaped

relationship between number of citations and patent value in the data. They rationalize

this finding by distinguishing between productive and strategic patents. For the former,

more citations reflect a higher patent productivity since a citation reflects further creation of

patents. For the latter, patenting an idea maintain incumbent’s monopoly power such that

entry is inhibited, so the number of citations decreases. To check whether German citations

are mostly productive or strategic, I review literature on firm surveys about their incentives

to patent (Blind et al., 2006; Cohen et al., 2002; Pitkethly, 2001; Duguet and Kabla, 2000;

Schalk et al., 1999; Arundel et al., 1995), which is mostly focused on Europe, particularly

Germany. In general, the major motive for German firms to file patents is the classical

incentive to protect their ideas, which goes in line with productive patenting.

Is it exposure instead of knowledge spillovers? A possible identification threat to estimate

β is that the number of citations reflect higher exposure of an inventor’s ideas, which is

orthogonal to knowledge spillovers. For example, if an inventor moves to a larger cluster,

then his ideas could obtain more exposure to a larger share of inventors, so his patents get

cited more often. This would introduce an upward bias when estimating β. I present two

main arguments against this concern.

First, the patenting market is drastically different from other industries that rely on

citations, such as academia. In academia, citations measure aspects other than productivity
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such as reputation, exposure, among others. In the patenting market, citations are required

whenever an invention uses information from another patent. Whenever a citation this

situation does not take place, a patent infringement has taken place, so then the owner

of the non-cited patent can pursue legal means to resolve the issue. This is particularly

relevant for the industrial economy of Germany that reports one of the largest number of

patent litigation cases (Cremers et al., 2017), and exhibits one of the highest cross-country

levels of patent enforcement (Papageorgiadis and Sofka, 2020).

Second, assuming that these effects are biasing the estimate of β, Tables A.2 and A.4

include the OLS and IV estimates where productivity is measured by the number of citations

from the EPO, which is the European patenting institution and completely independent from

the German patenting office. These estimates still provide evidence on the existence of local

knowledge spillovers in R&D.

Comparison to previous estimates. I now compare my estimates with previous literature.

Carlino et al. (2007) shows that the rate of patenting per capita is around 1.95% higher in a

US metropolitan area with 10% higher population density. My baseline estimate of 4.09% is

higher due to three differences. First, I test for knowledge spillovers in R&D by measuring

productivity through number of citations instead of patenting rates. Second, I estimate long-

run local knowledge spillovers since I consider 10-year periods. In contrast, they leverage

cross-sectional variation across US metropolitan areas. Third, my identification relies on a

historical natural experiment instead on the inclusion of covariates.

Moretti (2021) is the closest to this paper. His OLS estimate is around 0.067, while my

estimate from Table 1 is 0.175. When running the model in first differences, his IV estimate

is around 0.049, while my estimates from Table 2 is 0.409. Even thought both of these papers

estimate local knowledge spillovers in R&D at the inventor level, the differences in magnitudes

arise due to two differences. First, I estimate long-run spillovers (10-year periods), while

Moretti estimates short-run spillovers (1-year periods). Second, my larger estimates could
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result from stronger local knowledge spillovers in R&D in Germany in comparison to the

US.

2 Model

In this section I build a quantitative spatial model of innovation. The Supplementary

Appendix contains detailed derivations, microfoundations, and solution algorithms for the

model.

2.1 Setup

Geography. There is a discrete set of locations S ≡ {1, 2, . . . , S}, where o ∈ S is the origin

location, and d ∈ S is the destination location.

Firms. There are two types of firms in each location: (i) a final good firm, and (ii) an inter-

mediate input firm. The final good is produced by a representative firm, it is non-tradable,

and it is produced by aggregating intermediate inputs from all locations with constant elastic-

ity of substitution (CES). The intermediate input firm produces a representative intermediate

input, which is tradable across locations subject to trade costs. This firm is comprised by a

production facility and a colocated R&D subsidiary. The R&D subsidiary freely transmits a

blueprint to the facility, which the facility uses to produce the firm’s intermediate input at a

given quality. The production facility hires workers, and the R&D subsidiary hires inventors.

Agents. Each agent is either an inventor or a worker. Each agent supplies a unit of labor

inelastically, earns income from wages, housing rent, and redistributed profits, and consumes

local final goods. Agents are mobile, so they optimally decide where to locate by maximizing

their utility subject to migration costs.
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2.2 Technology

Final goods. In each location d, a representative firm produces a final good by aggregating

intermediate inputs from all locations. The production function of the final good is

Qd =

(∑
o

Z
1
σ
o Q

σ−1
σ

od

) σ
σ−1

, (4)

where Qd is the production of the final good, Qod is the quantity of intermediate inputs from

o sold to the final good firm in d, Zo is the quality of the intermediate input, and σ > 1 is

the constant elasticity of substitution (CES) across intermediate inputs. The final good firm

maximizes profits subject to Equation (4), which yields the demand for intermediate inputs

Qod = ZoP
−σ
od P

σ−1
d Xd, (5)

where P 1−σ
d =

∑
o ZoP

1−σ
od is CES price index, and Xd ≡ PdQd is total expenditure on the

final good in d. From Equation (5), quality Zo acts as a demand shifter for the intermediate

input o.

Production of intermediate inputs. In each location o, there is a representitative producer

of a tradable intermediate input. Each firm owns a production facility and a colocated R&D

center. The R&D center freely shares a blueprint with the facility that describes how to

produce the firm’s intermediate input at quality Zo. Then, given input quality Zo, the firm

optimally produces its intermediate input. The profits of the firm in o selling to d is

πod = PodQod − wL
o Lod, (6)

where Lod is the demand for workers. A unit of labor is required to produce an intermediate

input, so

Lod =
τodQod

Ao

, (7)
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where Ao are location fundamentals for the production of intermediate inputs, wL
o are worker

wages, Lod is the demand for workers, and τod > 1 are iceberg trade costs. Then, the firm

maximizes total profits πo =
∑

d πod subject to Equations (5), (6), and (7). Optimally, the

firm charges a constant markup on its unit cost

Pod = m
τodw

L
o

Ao

, (8)

where m ≡ σ
σ−1

is the CES constant markup over marginal costs. By plugging back Equation

(8) into firm total profits, we can rewrite them as

πo =
1

σ
Zo

∑
d

(
Pod

Pd

)1−σ

Xd. (9)

From Equation (9), total profits of the firm in o increases proportionally with the quality of

its intermediate input Zo. This reflects the role of quality Zo acting as a demand shift for

the intermediate input in Equation (5).

Quality of intermediate inputs. The R&D subsidiary of the intermediate input firm in

hires Ro inventors, and each inventor produces an idea which is then implemented into a

blueprint that describes how to produce the firm’s intermediate input. Then, the quality of

the intermediate input is

Zo = ZoRo, (10)

where Zo is the expected productivity of inventors’ ideas. In the Supplementary Appendix,

I provide two microfoundations that generate isomorphic expressions for the quality of inter-

mediate inputs, up to a constant. To provide intuition on how the quality of the intermediate

input is determined by the expected productivity of inventors’ ideas, I briefly sketch the first

microfoundation based on necessary tasks.

Consider that the firm’s R&D subsidiary owns a blueprint that contains a continuum of

tasks to produce a unit the firm’s intermediate input. The R&D center hires Ro inventors
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where each one produces an idea to be implemented in the blueprint, and these ideas are

heterogeneous in productivity. Given the assumption that each of these ideas improve the

quality of every task within the blueprint, and all tasks are necessary to produce a unit of

the intermediate input, then the expected productivity of the implemented ideas into the

blueprint captures the overall quality of the firm’s intermediate input.

Productivity of an inventor’s ideas. An inventor i working at a R&D subsidiary generates

an idea to be implemented into the firm’s blueprint on how to produce a unit of the firm’s

input. Ideas are heterogeneous in productivity Zi
o drawn from a probability distribution:

Zi
o ∼ Frechet

(
α, λ

1
α
o

)
, (11)

where α and λ
1
α
o are the shape and scale parameters of the Frechet distribution, respec-

tively. The Supplementary Appendix describes inventors’ innovation process based on Ko-

rtum (1997) that generates a Frechet distribution for the productivity of inventors’ ideas.

Under this framework, λo is referred as the spillover function since it embeds exogenous eco-

nomic forces that increase inventors’ productivity. Considering the probability distribution

in Equation (11), then the expected productivity of inventors’ ideas is

Zo = ψλ
1
α
o , (12)

where ψ > 0 is a constant that arises from the microfoundation for the quality of intermediate

inputs. Finally, guided by the empirical evidence on local knowledge spillovers in R&D in

Section 1.3, I consider the following functional form for the spillover function:

λ
1
α
o = ZoR

γ̃
o , (13)
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where Zo are location fundamentals for R&D, Ro is the number of inventors in o, and γ̃ ≡ γ
α

are local knowledge spillovers in R&D.4

Research and Development (R&D). The R&D subsidiary of the intermediate input firm

engages in R&D to endogenously determine the quality of its intermediate input. The quality

of the firm’s input is specified by a blueprint generated by the R&D subsidiary. The blueprint

is freely shared with the facility, and the firm’s production facility and R&D subsidiary are

colocated. Then, I can characterize the problem of firm’s R&D subsidiary as a maximization

of its research output Zo after hiring inventors at wage wR
o subject to the R&D subsidiary’s

production function implied by Equations (10)-(12). Then, firm demand for inventors is

wR
o = ψZoR

γ̃
o . (14)

2.3 Location choice

In each location d, there are two types of agents: inventors (n = R), and workers (n = L).

Upon moving to d, agents maximize their utility subject to their budget constraint. Agents

have preferences for consuming local final goods, housing, and location amenities. Then, an

agent’s indirect utility is

Un
d =

Bn
dV

n
d

P β
d r

1−β
d

, (15)

where Bn
d are type-specific location amenities, V n

d =
(1+π)wn

d

β
is income5, rd is housing rent,

and β is the expenditure share towards final goods. Then, an agent i of type n working in o

moves to d by maximizing its utility:

U i,n
od = max

d∈S

{
Un
d

µn
od

× ϵi
}
, (16)

4Technically, γ are local knowledge spillovers in R&D. Since γ and α are not separable, I consider γ̃ ≡ γ
α

to denote local knowledge spillovers in R&D throughout the paper.
5Housing expenditure in each location is redistributed as lump sum transfers to local workers and inven-

tors. National firm profits are invested in a national investment fund, and redistributed uniformly among
workers and inventors.
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where µn
od ≥ 1 are type-specific iceberg migration costs, G (ϵ) = exp (−ϵ−κ) are location

preference shocks, and κ is the spatial labor supply elasticity. Leveraging the order-statistic

properties of the Frechet distribution from Equation (16), the share of agents of type n

moving from o to d is

ηnod =

(
Un
d

µn
od

)κ
∑

δ

(
Un
δ

µL
oδ

)κ . (17)

2.4 Other important variables

Quality. From Equations (10)-(12), the quality of the intermediate input in location o is

Zo = ψZoR
1+γ̃
o . (18)

Price indices. From Equations (8) and (18), price indices are

Pod = m
τodw

L
o

Ao

and P 1−σ
d =

∑
o

ZoP
1−σ
od . (19)

Trade shares. From Equations (19), location o’s share in location d’s expenditure is

χod =
ZoAσ−1

o

(
τodw

L
o

)1−σ∑
o ZoAσ−1

o (τodwL
o )

1−σ . (20)

Equation (20) shows that trade shares χod increase with location fundamentals for pro-

duction Ao and quality Zo of intermediate inputs. This highlights the role of R&D as an

agglomeration force for economic activity.
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2.5 Equilibrium

Trade balance. Then, total income Yo is comprised by total wages, redistributed profits

and lump sum transfers from local housing expenditure:

Yo =
(1 + π)

(
wL

o Lo + wR
o Ro

)
β

. (21)

Total expenditure Xo is comprised by purchased intermediates from every location d:

Xo =
∑
d

χodXd. (22)

To close the model, I impose trade balance in every location:

Yo = Xo. (23)

Housing market. From the utility maximization problem of inventors and workers, aggre-

gate demand for housing is

ro =
(1− β)Yo

Ho

. (24)

Aggregate supply of housing is fixed, so

Ho = Ho, (25)

where Ho is the fixed quantity of housing in location o.

Labor markets. Consider an initial distribution of workers and inventors across locations{
Ro, Lo

}
∀o∈S . Then, considering the migration shares from Equations (17), the aggregate

26



supply of workers and inventors across locations are

Rd =
∑
o

ηRodRo, (26)

Ld =
∑
o

ηLodLo. (27)

From the demand for inventors in Equation (30) and the definition of quality in Equation

(18), the demand for inventors is

wR
o =

Zo

Ro

. (28)

Finally, since I impose trade balance, the demand for workers is not necessary to close

the model due to Walras’s Law.

Definition 1 (Equilibrium). Given the exogenous distribution of workers and inventors

across locations
{
Ro, Lo

}
∀o∈S , fixed supply of housing

{
Ho

}
∀o∈S , location fundamentals

{Zo,Ao}∀o∈S , location amenities
{
BR
o ,BL

o

}
∀o∈S , migration costs

{
µR
od, µ

L
od

}
∀o,d∈S,S , trade costs

{τod}∀o,d∈S,S , and parameters, an equilibrium is a set of wages
{
wR

o , w
L
o

}
∀o∈S , housing rent

{ro}∀o∈S , prices {Po}∀o∈S , quantities {Ro, Lo, Ho, Qo}∀o∈S , and quality {Zo}∀o∈S such that

(i) workers and inventors maximize utility, (ii) firms maximize profits, (iii) workers and

inventors labor markets clear, (iv) housing markets clear, and (v) trade is balanced.

2.6 Equilibrium with R&D subsidies

A national government implements location-specific subsidies for firms’ expenditure in R&D

{so}∀o∈S . These subsidies are funded with a uniform labor tax τ . The government holds a

balanced budget such that

τ
∑
o

(
wL

o Lo + wR
o Ro

)
=
∑
o

so
(
wR

o Ro

)
, (29)
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demand for inventors is

wR
o =

Zo

(1− so)Ro

, (30)

total income of a location is

Yo =
(1− τ + π)

(
wL

o Lo + wR
o Ro

)
β

, (31)

and housing demand is

ro =

(
1− β

β

)
(1− τ + π)

(
wL

o Lo + wR
o Ro

)
Ho

. (32)

Since the labor tax is uniform, they do not distort labor supplies, so migration shares in

Equation (17) remain unchanged.

Definition 2 (Equilibrium with R&D subsidies). Given the exogenous distribution of work-

ers and inventors across locations
{
Ro, Lo

}
∀o∈S , fixed supply of housing

{
Ho

}
∀o∈S , location

fundamentals {Zo,Ao}∀o∈S , location amenities
{
BR
o ,BL

o

}
∀o∈S , migration costs

{
µR
od, µ

L
od

}
∀o,d∈S,S ,

trade costs {τod}∀o,d∈S,S , R&D subsidies {so}∀o∈S , and parameters, an equilibrium with R&D

subsidies is a set of wages
{
wR

o , w
L
o

}
∀o∈S , housing rent {ro}∀o∈S , prices {Po}∀o∈S , quantities

{Lo, Ro, Ho, Qo}∀o∈S , and quality {Zo}∀o∈S such that (i) workers and inventors maximize util-

ity, (ii) firms maximize profits, (iii) workers and inventors labor markets clear, (iv) housing

markets clear, (v) government’s budget is balanced, and (vi) trade is balanced.

3 Taking the Model to the Data

In this section I describe the calibration strategy of the model. The model is parametrized

by the geography of West Germany, local knowledge spillovers in R&D {γ̃}, migration costs{
µR
od, µ

L
od

}
∀o,d∈S,S , location fundamentals {Zo,Ao}∀o∈S , location amenities

{
BR
o ,BL

o

}
∀o∈S , trade

costs {τod}∀o,d∈S,S , and remaining parameters {α, ψ, κ, σ, β}. Table 4 at the end of this sec-
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tion summarizes the calibration strategy of the model. Details about the parametrization of

the model are in the Supplementary Appendix.

Geography. The discrete set of locations S are the 104 labor markets in West Germany.

Local Knowledge Spillovers in R&D {γ̃}. The reduced-form estimates for local knowledge

spillovers in R&D in Section 1 are mapped to γ̃. Consider Equation (12), which describes

how cluster size increases the expected productivity of inventors. Considering Equation (13),

the model yields a log-log relationship between inventor productivity and cluster size:

log
(
Zi

o

)
= ι+ ιo + γ̃ log (Ro) + ϵiωo , (33)

where ι ≡ log (ψ) and ιo ≡ log (Zo). After considering the additional time dimension t

and technological areas a, and first differences, Equation (33) is the model counterpart of

Equation (2) which was used to estimate local knowledge spillovers in R&D β = 0.409.

Notice that, technically, β is the elasticity of inventor 5-year forward citations to cluster size,

while γ̃ is the elasticity of patent/idea productivity or quality to cluster size. Therefore,

the value of γ̃ is such that γ̃ = δβ, where δ is the elasticity of patent/idea productivity or

quality to 5-year forward citations. I follow Lanjouw and Schankerman (2004) and consider

δ = 0.22, such thatγ̃ = δβ = (0.22) (0.409) ≈ 0.09.

Migration costs
{
µR
od, µ

L
od

}
. For inventors (n = R) and workers (n = L), I parametrize mi-

gration costs as an exponential function of geographic distance between every location pair

µn
od = ρn0dist

ρn1
od exp

(
− ϵnod

κ

)
, where {ρn0} are intercepts that determines the overall level of

internal migration, {ρn1} are the elasticities of migration costs to distance, and ϵnod are

i.i.d. shocks. To keep the estimation consistent with the reduced-form estimates, I con-

sider 10-year periods. I calibrate {ρn0} by targeting the 10-year average migration rates

for workers and inventors of 24.99% and 26.38%, respectively. The calibrated values are
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{
ρR0 , ρ

L
0

}
= {1.76, 1.61}. To estimate {ρn1}, the location choice problem of the model yields

migration gravity equations for both workers and inventors:

log
(
ηnod,t

)
= ι+ ιo,t + ιd,t − κρn1 log (distod) + ϵnod,t. (34)

The gravity equation in (34) states that, conditional on origin/time and destination/time

fixed effects {ιo,t, ιd,t}, data on geographic distance between locations, and the spatial la-

bor supply elasticity κ, then migration elasticities to trade costs {ρn1} are identified. Since

migration shares report values of zero, I estimate these elasticities through Poisson Pseudo

Maximum Likelihood (PPML) estimation. From columns (2) and (4) in Table 3, I consider{
ρR1 , ρ

L
1

}
= {0.602, 0.591}. These values are very close to the median value of migration

elasticities estimated by Allen and Donaldson (2020), who also estimate them considering

10-year periods. Intuitively, Table A.6 shows that the value of these elasticities go up to{
ρR1 , ρ

L
1

}
= {0.651, 0.65} when considering 5-year periods, which reflect higher barriers to

move in the shorter run.

Table 3: Estimation of migration costs

n = R n = L

OLS PPML OLS PPML

log (distod) −1.001 −1.254 −1.063 −1.277

(0.014) (0.018) (0.020) (0.016)

ρn1 0.472 0.591 0.501 0.602

R2 0.812 · 0.839 ·
N 8, 336 21, 632 18, 381 21, 632

Notes: In this table I report migration cost elasticities from Equation (34). Columns 2 − 3 are the regressions for inventors,
where column 2 are OLS estimates, and column 3 are PPML estimates. Columns 4− 5 are the regressions for workers, where
column 4 are OLS estimates, and column 5 are PPML estimates. For OLS estimates, the dependent variable is measured as

log
(
ηnod,t

)
is the log of the share of inventors or workers from o that moved to d during a given period. Row 3 is the estimate

associated to log (distod), where distod is the Euclidean distance in miles from o to d. Row 4 are standard errors two-way
clustered at the o, t and d, t level. Row 5 is the implied migration elasticity from the estimates from row 3 given κ = 2.12. Rows
6− 7 contain the goodness of fit and number of observations in each specification, respectively.
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Location fundamentals {Zo,Ao}. I recover location fundamentals for R&D {Zo} and pro-

duction {Ao} through model inversion. First, given parameter values {ψ, γ̃}, and data on

wages and population
{
wR

o , Ro

}
, there is a unique set of values for location fundamentals

for R&D {Zo} that is consistent with the aggregate demand for inventors from Equation

(28). Then, given trade costs {τod}, location fundamentals for R&D {Zo}, parameter values

{ψ, σ, γ̃}, and data on wages and population
{
wR

o , w
L
o , Ro, Lo

}
, there is a unique set of val-

ues for location fundamentals for production {Ao} that is consistent with trade balance from

Equations (20)-(23). Since the model is static, I use data on wages and population from 2014

to denote West Germany’s stationary equilibrium. In Figure 1 I show the spatial distribution

of these location fundamentals. As expected, to rationalize the presence of production and

innovation in less-dense locations, these locations must report higher fundamental levels of

productivity.

Figure 1: Location fundamentals

(a) R&D {Zo} (b) Production {Ao}

Notes: These figures show the spatial distribution of location fundamentals {Zo,Ao} in West Germany. A darker (lighter)
orange color denotes a higher (lower) location fundamental. All these values are normalized by their corresponding geometric
mean.

Location amenities
{
BR
o ,BL

o

}
. I recover location amenities for both workers and inventors{

BR
o ,BL

o

}
through model inversion. Given the exogenous distribution of workers and in-

ventors across locations
{
Ro, Lo

}
∀o∈S , fixed supply of housing

{
Ho

}
∀o∈S , trade costs {τod},
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migration costs
{
µR
od, µ

L
od

}
, location fundamentals {Zo,Ao}, parameter values {α, ψ, κ, σ, β},

and data on wages and population
{
wR

o , w
L
o , Ro, Lo

}
, there is a unique set of values for lo-

cation amenities
{
BR
o ,BL

o

}
that is consistent with the data. Since the model is static, I use

data on wages and population from 2014 to denote West Germany’ steady-state equilibrium.

The initial distribution
{
Ro, Lo

}
is from 1980 and they are scaled such that the total number

of workers and inventors in West Germany is the same for 2014. To simplify, I consider that

Ho = Lo + Ro. To recover these amenities, I solve a fixed point algorithm on the system of

excess demand functions implied by Equations (27) and (26).

In Figure 2 I show the spatial distribution of these fundamentals. As reflected by the

spatial distribution of both workers and inventors, locations like Munich, Stuttgart, and

Hamburg reflect the highest levels of amenities. More importantly, inventors exhibit higher

levels of location amenities in the south of West Germany than workers, which reflects their

higher level of spatial concentration in the data.

Figure 2: Location amenities

(a) Inventors
{
BR
o

}
(b) Workers

{
BL
o

}

Notes: This figure shows the spatial distribution of location amenities
{
BR
o ,BL

o

}
in West Germany. A darker (lighter) purple

color denotes a higher (lower) amenity. All these values are normalized by their corresponding geometric mean.

Trade costs {τod}. I parametrize trade costs as an exponential function of geographic dis-

tance between every location pair τod = ξ0dist
ξ1
od, where ξ0 is an intercept that determines the
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overall level of internal trade, and ξ1 is the elasticity of trade costs to distance. Following

Ramondo et al. (2016), I calibrate ξ0 to target a 50% share of total intra-regional trade. For

the elasticity of trade costs to distance, I follow Krebs and Pflüger (2021) and set ξ1 =
1.56
σ−1

.

Remaining parameters {α, ψ, κ, σ, β}. The remaining parameters are the dispersion of pro-

ductivity of ideas (α), the constant that arises from the microfoundation for the quality of

intermediate inputs (ψ), the spatial labor supply elasticity (κ), the elasticity of substitution

across intermediate inputs (σ), and the expenditure share towards final goods (β). Regard-

less of the microfoundation for firms’ R&D, a value of α is necessary to obtain values for the

constant ψ from Equation (12). Following the process for the generation of ideas, α is the

Pareto shape parameter for the productivity of ideas. I run a parametric fit on the number

of 5-year forward citations and set α = 1.5. This value is similar to previous Pareto para-

metric fits for the number of forward citations (Silverberg and Verspagen, 2007). The value

of the constant ψ depends on the microfoundation of the innovation process. Regardless of

the chosen microfoundation, its value is only a function α. For the migration elasticity κ, I

follow Peters (2022) and set κ = 2.12. I follow Broda and Weinstein (2006) and set σ = 2.5,

which is the median elasticity for industrial sectors as in the German economy between the

1980s and 2000s. Finally, I follow Redding (2016) and set β = 0.75.
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Table 4: Summary of calibration

Parameter Description Value Identification/Targets

Innovation

γ̃
Local Knowledge

γ̃ = (0.409) (0.22)
0.409 : IV estimate, Table 2, column 3

Spillovers in R&D 0.22 : Lanjouw and Schankerman (2004),
Table 2, column 8

α Idea productivity dispersion 1.5 Pareto parametric fit

Migration{
ρR0 , ρL0

}
Migration costs, intercepts ρR0 = 1.61 26.38% migration rate of inventors

ρL0 = 1.76 24.99% migration rate of workers{
ρR1 , ρL1

}
Migration costs, elasticities ρR1 = 1.254

κ Gravity estimates
ρL1 = 1.277

κ
κ Migration elasticity 2.12 Peters (2022), Table 9

Location fundamentals and amenities
Zo Location fundamentals for R&D Recovered from aggregate demand

for inventors
Ao Location fundamentals for production Recovered from trade balance{

BR
o ,BL

o

}
Location amenities Recovered from aggregate supply

for inventors and workers

Trade
ξ0 Trade costs, intercept 0.17 50% intra-trade shares (Ramondo et al., 2016)
ξ1 Trade costs, elasticity 1.56

σ−1
Krebs and Pflüger (2021)

σ Elasticity of substitution 2.5 Broda and Weinstein (2006), Table 5
β Exp. share on final goods 0.75 Redding (2016)

Notes: This table summarizes the calibration of the model parameters. The first column shows the parameter of interest,
the second column provides a short description, the third column reports the calibrated value, and the fourth column briefly
describes the identification strategy.

4 R&D Policy Counterfactuals

In this section, I use the calibrated model to conduct three counterfactuals to quantify

the importance of local knowledge spillovers in R&D. First, I implement a reduction in

migration costs for inventors. Second, I evaluate the effect of the 25% subsidy for firms’

R&D expenditure within the 2020 German R&D Tax Allowance Act.. Third, by solving the

social planner problem, I back out optimal R&D subsidies..

4.1 Reducing inventor migration costs

In Figure 3, we evaluate the effect of reducing inventor migration costs µod on aggregate

output Qd. To do this, we consider different values for inventor migration costs µ̂R
od = µR(1−κ)

od ,

where κ ∈ [0, 1] is a proportional reduction parameter. κ = 0 is the baseline calibration for

migration costs, and κ = 1 is frictionless migration for inventors. In Panel 3a, we study the
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aggregate effect of reducing inventor migration costs µ̂R
od on aggregate output E

{
Q̂d

Qd

}γ=γ∗

,

where Q̂d is aggregate output given µ̂R
od, Qd is aggregate output given µR

od, and γ = γ∗ is

a given value of local knowledge spillovers in R&D. We observe that, for different values of

spillovers γ̃, aggregate output significantly increases with reductions of inventor migration

costs. For κ = 1
2
, output increases around 22% on average, and at κ = 1 output increases

between 40% and 50% on average. Given that inventors comprise a extremely small part of

the labor force, these exercises reflect the importance of promoting the geographic mobility

of inventors to promote economic activity. In Panel 3b, we study the heterogeneous effects

on aggregate output Q̂d

Qd
across West German locations for different values of µ̂R

od and given

the baseline value γ̃ = 0.09. We observe that the large increases in aggregate output mask a

large amount of heterogeneity. For example, at a proportional reduction of κ = 1
2
, changes

in output across West German locations range from −50% to 200%.

Figure 3: Reduction of inventor migration costs

(a) Aggregate effect (b) Heterogeneous effects at γ̃ = 0.09

Notes: This figure is comprised by two panels. In Panel 3a, the horizontal axis is the proportional reduction parameter of

inventor migration costs κ in µ̂R
od, and the vertical axis is the expected change in aggregate output E

{
Q̂d
Qd

}γ=γ∗

, where Q̂d

is aggregate output given µ̂R
od, Qd is aggregate output given µR

od, and γ̃ = γ∗ is a given value of local knowledge spillovers in

R&D (lines yellow, orange, brown, and red). In Panel 3b we show density plots across West German locations for Q̂d
Qd

for

proportional reductions of κ =
{

1
2
, 1

}
(lines cyan and blue) and given γ̃ = 0.09,

Second, in Figure 4 we isolate the importance of local knowledge spillovers in R&D γ̃

for aggregate output. To do this, we calculate E
{

Q̂d

Qd

}γ̃=γ∗

−E
{

Q̂d

Qd

}γ̃=0

, where E
{

Q̂d

Qd

}γ̃=γ∗

is the expected change in aggregate output as in Figure 3a, and E
{

Q̂d

Qd

}γ̃=0

is the expected

change in aggregate output in an scenario without local knowledge spillovers in R&D. We
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observe that the quantitative importance of the spillovers depend on the reduction of inventor

migration costs. For κ = 1
2
, the spillovers explain between 1% and 3% out of the 22% increase

in aggregate output. For κ = 1, spillovers at baseline value γ̃ = 0.18 explain 12.5% out of

the 50% increase in aggregate output. This exercise reveals the complementarity when

introducing policies that promote local knowledge spillovers in R&D and reduce inventor

migration costs to foster economic activity.

Figure 4: Role of γ̃ in reducing inventor migration costs

Notes: In Panel 4, the horizontal axis is the proportional reduction parameter of inventor migration costs κ in µ̂R
od, and the

vertical axis is the expected change in aggregate output E
{

Q̂d
Qd

}γ̃=γ∗

−E
{

Q̂d
Qd

}γ̃=0
, where E

{
Q̂d
Qd

}γ̃=γ∗

is the expected change

in aggregate output as in Figure 3a, and E
{

Q̂d
Qd

}γ̃=0
is the expected change in aggregate output in an scenario without local

knowledge spillovers in R&D (lines yellow, orange, brown, and red).

4.2 2020 German R&D Tax Allowance Act

In this section, we evaluate the 2020 German R&D Tax Allowance Act, which introduced

a R&D tax incentive scheme as from January 1st 2020. Under this scheme, firms were

entitled to receive funding for their R&D activities. In particular, this scheme provides a

25% subsidy for in-house R&D activities regardless of firm characteristics (Deloitte, 2020).

In Figure 5, we solve a equilibrium with R&D subsidies as in Section 2.6 and evaluate the
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effect of implementing a subsidy of so = 25%,∀o on aggregate output Qd. In Panel 5a we

show that, at a baseline value of spillovers γ̃ = 0.09, this policy would have a modest impact

of increasing output by 2.2% on average. More importantly, we see that the policy could

have increase or reduced output depending on the degree of local knowledge spillovers in

R&D. For example, if γ̃ = 0 then aggregate output would have decreased by around 21%.

In contrast, if γ̃ = 0.18 then aggregate output would have increased by around 35%. The

mechanism behind this result is because the R&D subsidies are funded by labor taxes. For

example, under low or no spillovers, the decrease in income from labor taxes overcomes the

benefit from the subsidy, which in turn decreases output in average. In Panel 5b, we study

the heterogeneous effects on aggregate output Q̂d

Qd
across West German locations for different

values of γ̃. We observe that the modest increase in aggregate output mask a decent amount

of heterogeneity. For example, at γ̃ = 0.09, changes in output across West German locations

range from −10% to 25%. This in contrast with other values of γ̃ where the degree of

heterogeneity increases with its effect on output.

Figure 5: 25% R&D subsidy

(a) Aggregate effect (b) Heterogenenous effects

Notes: This figure is comprised by two panels. In Panel 5a, the horizontal axis is local knowledge spillovers in R&D γ̃, and

the vertical axis is the expected change in aggregate output E
{

Q̂d
Qd

}γ=γ∗

, where Q̂d is aggregate output given so = 25%, Qd

is aggregate output given so = 0%. In Panel 5b we show density plots across West German locations for Q̂d
Qd

for spillovers

γ̃ =
{
0, 0.09

2
, 0.09, 0.18

}
(lines yellow, orange, brown, and red),

6

37



4.3 Place-based R&D subsidies

Notice that the 25% subsidy from the 2020 German R&D Tax Allowance Act is blind to

geography. Given the presence of local knowledge spillovers in R&D, it is not obvious that

a flat subsidy is optimal or close to optimal. Then, in this section we address whether R&D

policies that internalize these spillovers are place-based. To do this, we follow two sequential

steps. First, we solve the social planner problem. This yields an optimal allocation X̂o.

Second, we find the set of R&D subsidies s∗o, which is a least squares problem between the

competitive equilibrium with R&D subsidies Xo and the target X̂o. Details about these steps

are in the Supplementary Appendix.

For computational easiness, we consider a simplified economy with 10 locations. In Figure

6, we see that s∗o vary across locations. More importantly, we see that locations with higher

fundamentals for R&D should receive a higher R&D subsidy on average. This highlights the

importance of accounting for a country’s geography of innovation when implementing R&D

subsidies.

38



Figure 6: Place-based R&D subsidies

Notes: The economy is comprised by 10 locations in West Germany. Horizontal axis are location fundamentals for R&D Zo.
Vertical axis are optimal R&D subsidies s∗o. Each blue dot is a West German location, and the red line is a linear fit across
West German locations.

5 Conclusions

In this paper I quantify the aggregate importance of local knowledge spillovers in R&D. I

causally estimate these spillovers by exploiting the historical episode of the arrival of East

German inventors across West Germany after the Reunification of Germany. I then em-

bed these spillovers into a spatial model of innovation, and use the model to quantify the

importance of these spillovers when implementing policies that promote R&D activities. I

show that reducing migration costs for inventors and subsidies to firms’ R&D activities can

substantially increase aggregate output, and local knowledge spillovers in R&D is crucial for

the effectiveness of these policies.

This paper have abstracted from other different channels that could also contribute and

interact with these spillovers. First, occupational choice between workers and inventors, or

firm selection into R&D through firm heterogeneity could amplify the effect of policies due
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to entry of agents into innovation. Second, inter-temporal knowledge spillovers could be

introduced in the model to quantify the role of local knowledge spillovers in R&D and R&D

policies for long-run growth. Finally, new micro-data on inventors also allows to account for

the importance of firm-level spillovers and the rise of teams.
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Appendix

A Additional figures

Figure A.1: West Germany

Notes: This figure shows a map of Germany. West Germany is on the left side of the map (blue), and East Germany is on the
right side of the map (gray). The red line separating West and East Germany is the Iron Curtain, which was lifted on October
1990. The missing area in East Germany is Berlin. The administrative boundaries are labor markets.

Figure A.2: The Exodus to the West

Notes: This figure shows the yearly number of East Germans migrating to West Germany. The dashed red line denotes 1990,
the date of the Reunification of Germany.
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B Additional tables

Table A.1: Top 10 West german cities, 2014

Size Size
Panel A: Electrical engineering Panel D: Mechanical engineering
Stuttgart 15.096 Stuttgart 15.865
Munchen 13.776 Munchen 8.140
Regensburg 5.941 Boblingen 5.858
Nurnberg 4.533 Frankfurt 3.577
Erlangen 4.049 Ravensburg 3.318
Karlsruhe 4.005 Erlangen 3.197
Boblingen 2.772 Karlsruhe 3.093
Reutlingen 2.728 Wolsfburg 2.592
Soest 2.552 Dusseldorf 2.540
Frankfurt am Main 2.200 Heilbronn 2.471

Panel B: Instruments Panel E: Workers
Stuttgart 13.584 Hamburg 6.482
Munchen 8.732 Munchen 5.541
Heidenheim 6.506 Frankfurt 5.369
Erlangen 5.764 Stuttgart 5.070
Boblingen 4.965 Dusseldorf 4.560
Frankfurt 4.109 Koln 3.640
Rottweil 4.052 Essen 3.333
Freiburg 3.424 Hannover 2.541
Regensburg 2.968 Nurnberg 1.932

Bremen 1.895
Panel C: Chemistry
Dusseldorf 11.011
Stuttgart 10.734
Hamburg 7.202
Munchen 6.301
Frankfurt 5.609
Altotting 2.908
Essen 2.700
Koln 2.423
Reutlingen 2.423
Erlangen 2.285

Notes: This table is comprised by five panels. Panels A-D reports the share of inventors working on their corresponding
technological area that lives in a given city. Panel E reports the share of workers that lives in a given city. In each panel, I only
report the top 10 cities.
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Table A.2: OLS models, robustness

Panel A: log (1 + Z)
(1) (2) (3) (4) (5) (6)

EPO 0.117 0.143 0.224 0.184 0.0859 0.173
(0.0186) (0.0173) (0.0135) (0.0319) (0.0349) (0.0679)

EU 0.142 0.193 0.255 0.203 0.103 0.245
(0.0208) (0.0162) (0.0178) (0.0461) (0.0463) (0.0864)

Panel B: IHS (Z)
(1) (2) (3) (4) (5) (6)

DPMA 0.0847 0.135 0.118 0.130 0.108 0.217
(0.0326) (0.0209) (0.0205) (0.0475) (0.0440) (0.0798)

EPO 0.140 0.171 0.266 0.223 0.102 0.214
(0.0219) (0.0204) (0.0160) (0.0389) (0.0431) (0.0810)

EU 0.142 0.193 0.255 0.203 0.103 0.245
(0.0208) (0.0162) (0.0178) (0.0461) (0.0463) (0.0864)

ιd,t ✓ ✓ ✓ ✓ ✓
ιa,t ✓ ✓ ✓ ✓
ιda ✓ ✓ ✓
ιω ✓ ✓
ιi ✓
N 177, 301 177, 300 177, 300 177, 294 162, 803 84, 639

Notes: In this table I report OLS estimates from Equation (1). The table is comprised by two panels. In Panel A, the

dependent variable is measured as log
(
1 + Ziω

da,t

)
, where Ziω

da,t is the number of 5-year forward citations. In Panel B, the

dependent variable is measured as IHS
(
Ziω
da,t

)
, where IHS (·) is the inverse hyperbolic sine function. Each panel contains a

main set of rows denoted by “DPMA”, “EPO”, and “EU”, which indicate the institution that generated the forward citations.
The table is comprised by 6 columns. Rows 3, 5, 9, 11, 13 report the estimate of β, and rows 4, 6, 10, 12, 14 report standard errors
clustered at the (d, a) level. Each column corresponds to a different combination of fixed effects, as pointed out by rows 15−19.
Row 20 report the number of observations.
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Table A.3: OLS models, 5-year periods

(1) (2) (3) (4) (5) (6)
log (1 + Z) 0.0291 0.0472 0.0449 0.0707 0.0664 0.0907

(0.0096) (0.007) (0.0073) (0.0146) (0.0135) (0.0215)
IHS (Z) 0.0368 0.060 0.0568 0.0902 0.0850 0.116

(0.0124) (0.0089) (0.0094) (0.0187) (0.0171) (0.0273)

ιd,t ✓ ✓ ✓ ✓ ✓
ιa,t ✓ ✓ ✓ ✓
ιda ✓ ✓ ✓
ιω ✓ ✓
ιi ✓
N 177, 301 177, 300 177, 300 177, 294 162, 803 84, 639

Notes: In this table I report OLS estimates from Equation (1). Rows 2 − 3 report the estimated value of β and its standard

errors in parentheses when the dependent variable is measured as log
(
1 + Ziω

da,t

)
, where Ziω

da,t is the number of 5-year forward

citations from the DPMA. Rows 4−5 report the estimated value of β and its standard errors in parentheses when the dependent

variable is measured as IHS
(
Ziω
da,t

)
, where IHS (·) is the inverse hyperbolic sine function. The table is comprised by 6 columns.

Each column corresponds to a different combination of fixed effects, as pointed out by rows 6 − 10. Standard errors clustered
at the (d, a) level. Row 11 reports the number of observations.
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Table A.4: IV models, robustness

Panel A: ∆ log (1 + Z)
(1) (2) (3)

EPO 0.164 0.139 0.209
(0.0422) (0.0723) (0.117)

EU 0.210 0.270 0.343
(0.0436) (0.0907) (0.143)

Panel B: ∆IHS (Z)
(1) (2) (3)

DPMA 0.215 0.380 0.498
(0.0514) (0.122) (0.184)

EPO 0.182 0.144 0.237
(0.0494) (0.0849) (0.140)

EU 0.235 0.304 0.393
(0.0588) (0.104) (0.168)

ιd,t ✓ ✓
ιa,t ✓

KP − F 132.1 34.14 28.23
N 50, 778 50, 776 50, 776

Notes: In this table I report IV estimates from Equation (2). The table is comprised by two panels. In Panel A, the dependent

variable is measured as ∆ log
(
1 + Ziω

da,t

)
, where Ziω

da,t is the number of 5-year forward citations. In Panel B, the dependent

variable is measured as ∆IHS
(
Ziω
da,t

)
, where IHS (·) is the inverse hyperbolic sine function. Each panel contains a main set

of rows denoted by “DPMA”, “EPO”, and “EU”, which indicate the institution that generated the forward citations. The table
is comprised by 3 columns. Rows 3, 5, 9, 11, 13 report the estimate of β, and rows 4, 6, 10, 12, 14 report standard errors clustered
at the (d, a) level. Each column corresponds to a different combination of fixed effects, as pointed out by rows 15− 16. Row 19
shows the first stage Kleibergen-Paap F-statistic (KP-F), and row 20 reports the number of observations.
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Table A.5: IV models, 5-year periods

(1) (2) (3)
∆ log (1 + Z) 0.0367 0.0865 0.0849

(0.0232) (0.0331) (0.0428)
∆IHS (Z) 0.0464 0.109 0.104

(0.0295) (0.0420) (0.0543)

ιd,t ✓ ✓
ιa,t ✓

KP − F 85.96 26.64 38.15
N 100, 234 100, 228 100, 228

Notes: In this table I report IV estimates from Equation (2). Rows 2−3 report the estimated value of β and its standard errors in

parentheses when the dependent variable is measured as ∆ log
(
1 + Ziω

da,t

)
, where Ziω

da,t is the number of 5-year forward citations

from the DPMA. Rows 4−5 report the estimated value of β and its standard errors in parentheses when the dependent variable

is measured as ∆IHS
(
Ziω
da,t

)
, where IHS (·) is the inverse hyperbolic sine function. The table is comprised by 3 columns.

Each column corresponds to a different combination of fixed effects, as pointed out by rows 6− 7. Standard errors clustered at
the (d, a) level. Row 8 shows the first stage Kleibergen-Paap F-statistic (KP-F), and row 9 reports the number of observations.

Table A.6: Estimation of migration costs, 5-year periods

n = R n = L

OLS PPML OLS PPML

log (distod) −1.020 −1.381 −1.505 −1.380

(0.010) (0.017) (0.025) (0.015)

ρn1 0.481 0.651 0.709 0.650

R2 0.826 · 0.835 ·
N 17, 283 54, 080 43, 835 54, 080

Notes: In this table I report migration cost elasticities from Equation (34) under 5-year periods. Columns 2−3 are the regressions
for inventors, where column 2 are OLS estimates, and column 3 are PPML estimates. Columns 4 − 5 are the regressions for
workers, where column 4 are OLS estimates, and column 5 are PPML estimates. For OLS estimates, the dependent variable is

measured as log
(
ηnod,t

)
is the log of the share of inventors or workers from o that moved to d during a given period, where I

consider 5-year periods. Row 3 is the estimate associated to log (distod), where distod is the Euclidean distance in miles from o
to d. Row 4 are standard errors two-way clustered at the o, t and d, t level. Row 5 is the implied migration elasticity from the
estimates from row 3 given κ = 2.12. Rows 6− 7 contain the goodness of fit and number of observations in each specification,
respectively.
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