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Abstract

We provide one of the first causal estimates of elasticities of substitution across suppliers within
the same product. We identify these elasticities using new real-time administrative tax data on
firm-to-firm transactions, with product-level prices and quantities. We leverage geographic
and temporal variation from India’s Covid-19 lockdowns to derive causal estimates of these
elasticities. Suppliers are highly complementary even at this granular level, with an estimated
elasticity of 0.55. We empirically explore explanations behind this low elasticity, showing
that the quality of institutions, input specificity, inventories, and time horizons matter. These
firm-level complementarities amplify the propagation of negative shocks through production
networks, and make connected firms important for shock propagation. In policy counterfac-
tuals, we show that given these complementarities, allowing more connected firms to operate
in the face of shocks mitigates output declines non-linearly with the size of the productivity
shock.
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1 INTRODUCTION

The ability of firms to substitute inputs across suppliers is critical for the resilience of supply chains
and the transmission of supply shocks. If firms are unlikely to substitute across suppliers, shocks
could amplify by transmitting further downstream and upstream through the supply chain. The
importance of this mechanism was reflected during the Covid-19 pandemic, where supply chain
disruptions drove dramatic reductions in GDP worldwide. For instance, India reported a −7.3%
growth rate for the 2020/21 financial year, one of the most significant contractions worldwide and
the largest decline in GDP since India’s independence.1

In this paper, we quantify the importance of firm-level elasticities of substitution across sup-
pliers (firms) of the same product category to explain large fluctuations in GDP. We provide new
estimation strategies and estimates for these elasticities by leveraging regional variation in supply-
side shocks induced by the Indian government’s massive lockdown policy. We explore explana-
tions behind the magnitude of our estimated elasticity, showing that contract specificity of inputs,
the level of inventories, and response time horizons matter. We show that this elasticity is key to
partly explaining the large income declines during the Covid-19 pandemic. Using new big data
computational techniques, we quantify this decline in GDP by directly leveraging information on
the economy-wide firm-to-firm network, and highlight how protecting more connected firms miti-
gates output declines.

We pose two main research questions. First, are suppliers of intermediate inputs within a
product category complements or substitutes?2 The degree of complementarity or substitutabil-
ity determines how shocks propagate through supply chains. We expect shocks to propagate less
across firm networks if input suppliers are substitutable. However, if input suppliers are com-
plements, the effects of adverse shocks can easily propagate through buyer-supplier networks.
Second, we ask how this newly estimated elasticity affects firm-level sales, and ultimately GDP,
by amplifying negative shocks through firm-level input-output linkages, and how the effect of the
shock depends on the connectivity of affected firms.

Two unique features of our setting allow us to answer these questions credibly. First, India
had a distinct mosaic of lockdown policies, whereby the roughly 600 districts were classified into
three different zones with varying degrees of restrictions. This allows us to isolate variation in the

1https://www.economicsobservatory.com/how-has-Covid-19-affected-indias-economy.
More broadly, during the 2020/21 financial year, GDP fell by −3.3% in emerging market economies, and by −2.2% in
developing countries.

2Complementarity in this setting means that a buyer’s expenditure share for a given supplier rises with the input
price of that same supplier in the short run. That is, the buyer is unable to replace a sufficient amount of the input
from the high-cost supplier with input from the lower-cost substitute to reduce the expenditure share attributed to the
high-cost supplier.
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ability to trade and transport goods over this period, thereby inducing variation in input prices at
the supplier level. Second, we obtain new granular and high-frequency administrative data on the
universe of firm-to-firm transactions for a state in India, with unique information on unit values
and HS-product classifications. This previously unused data on prices and purchase quantities at
the buyer-supplier level, combined with exogenous variation in prices induced by the lockdown,
allows us to estimate new elasticities at the firm level and across different suppliers of a product.

We first document whether the lockdown indeed induced variation in prices we need to es-
timate these elasticities. We begin by presenting reduced-form evidence that leverages the nation-
wide, sudden, and unprecedented lockdown imposed by the Indian government in March 2020.
Importantly, these lockdowns induced geographic variation: districts were categorized into Green

(mild lockdown), Orange (medium lockdown), and Red (severe lockdown). Since the lockdowns
were sudden and unexpected, they were likely implemented independent of economic fundamen-
tals and induced strong variation in transactions between firms across India.3 We show, conditional
on high-dimensional fixed effects, that these adverse supply shocks led to a sharp increase in unit
values (prices), and dramatic fall in transactions of intermediate inputs, if either buyers or sellers
were located in high lockdown zones.

We then estimate the elasticity of substitution across suppliers by leveraging the variation in
prices we document in our reduced form. We do so by examining whether buyers were able to ad-
just their input expenditure shares away from the more affected suppliers towards the less affected
suppliers (for a particular product). The elasticity of substitution across suppliers is thus quantified
by studying the causal response of plant intermediate input use to changes in its supplier’s interme-
diate input prices. Since causally estimating this elasticity requires tracing the slope of the buyers’
input demand curves, we would need exogenous sources of variation in the supplier’s marginal
cost of production or transportation costs to estimate these elasticities.

Yet, Covid-19 was not just a supply shock. The pandemic outbreak was a combination
of exogenous shocks to the quantities of factors supplied, the productivity of producers, and the
composition of final demand by consumers across industries (Baqaee and Farhi, 2020). To estimate
the elasticity of substitution across suppliers of inputs, we leverage variation in input prices driven
by the sudden restrictions in economic activity in lockdown districts where these suppliers were
located. In addition, we leverage variation in trade costs arising from transportation restrictions in
districts through which the goods need to pass from the seller to the buyer. While our instruments
help derive the necessary variation, to further isolate supply shocks from other shocks, we control
for an entire array of high-dimensional fixed effects, such as buyer-by-product-by-time level fixed
effects to account for demand-side shocks, and product-specific shocks. Given the richness of our

3See the BBC (link), and The Wire (link)
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data, we can also include seller-by-product fixed effects, or even seller-product-time fixed effects in
our most stringent specifications. We additionally control for other factors, such as firms’ exposure
to foreign shocks transmitted through trade (Hummels et al., 2014), and the caseload and severity
of Covid-19 cases.

We find that suppliers within the same HS-4 product category are highly complementary.
Our estimated elasticity of substitution across suppliers of the same product is 0.55. In various
specification tests employing different combinations of fixed effects and different sources of vari-
ation, we find that the estimated elasticities lie within a range of 0.50 to 0.66. Our new elasticities
show that inputs across firms are highly complementary even within the same HS-4 product cat-
egory. The elasticities are similar at the HS-6 and HS-8 product level.4 Additionally, we also
estimate a more aggregate elasticity of substitution across different industries of 0.69, which im-
plies complementarity across industries as in Atalay (2017) and Boehm et al. (2019).5

A challenge in the estimation of this elasticity arises if sellers and buyers decide to trade
due to unobservable reasons. To account for this extensive margin, we leverage variation from
counterfactual prices based on transactions that did not happen in a particular period. A counter-
factual supplier of a buyer in a given year-month is defined as a supplier who has ever traded with
that buyer in our sample period and supplies to other buyers but not to that particular buyer in that
year-month. Given that we observe the unique prices at which sellers and buyers transact with each
other, we can construct these counterfactual prices. We expand our estimating sample to include
all counterfactual suppliers of a buyer, using counterfactual prices charged by the supplier to other
buyers in the same time period.6 We continue to find that across all specifications, there is a high
level of complementarity.

But why, in the short run, do buyers not substitute a lot away from high-cost suppliers? We
investigate several candidate mechanisms. We argue that the elasticity is not a fixed exogenous
parameter, but rather an empirical average across different types of firms and industries. First,
we find that sellers that offer differentiated intermediate inputs exhibit higher complementarity.
This lends support to the hypothesis that buyers may not be able to substitute because inputs are

4We use the term “product" and “product category" interchangeably and define whether we refer to HS-4, HS-6,
or HS-8 codes when relevant. We use the term “industry" to refer to the broad HS Sections.

5The finding that the product-level elasticity is higher than the elasticity of substitution across suppliers is consistent
with the macroeconomic and production networks literature which generally argues that the elasticity of substitution
increases with the level of aggregation (Houthakker, 1955; Bachmann et al., 2024; Lagos, 2006). The key idea is that
substitution may happen at a higher level than the individual production process or even individual firms (Bachmann
et al., 2024). See Section 5.2 for more discussion on this.

6For the construction of these counterfactual prices to be relevant, the prices charged by a seller in a particular time
should be approximately the same across all buyers, that is, the counterfactual price will be difficult to measure if the
seller charges differential prices across buyers within the same year-month. We show evidence for this in Section 4.1.1
and in Figure A3 in the appendix.
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often sourced from specific suppliers and customized, rather than bought “off-the-shelf" (Elliott
and Golub, 2022). Second, we find that intermediate inputs purchased from buyers in locations
with better institutional quality display higher complementarity. This reflects the importance of
contract enforcement for the trade of more differentiated intermediate inputs. Third, in line with
the previous literature, we find that the estimation of this elasticity is necessarily tied to the time
horizon (Ruhl et al., 2008; Peter and Ruane, 2022). Allowing buyers a longer time to substitute—
e.g., a quarter rather than a month—increases the value of the elasticity of substitution. Given the
expectations that many large shocks may be short-lived, our estimates are relevant for short-run
shocks rather than longer-term structural changes. Finally, we find that the level of inventory in
the buyer’s industry helps to substitute inputs to some degree. When buyers are in industries with
high levels of inventory, inputs across suppliers of the same product are less complementary, as the
buyer can temporarily substitute a costly input from a seller with its input inventory holdings.

We recognize that our elasticity estimates should be thought of as an empirical average over
industries, locations, and types of firms. That is, we do not think that the elasticity is a fixed
exogenous parameter that applies to every buyer. Rather, it likely depends on various factors, such
as the contracting structure and the enforcement of contracts, the level of inventories by industry,
and the types of products produced. This is why our heterogeneity analysis adds much nuance to
our understanding of why (on average) we find low substitutability.

Next, we outline a simple quantitative general equilibrium model of firm-to-firm trade à la
Baqaee and Farhi (2019) with a production function augmented with substitution across suppliers
within the same product category. The model simply serves as an illustration of the influence of
the elasticity of substitution across suppliers for shock propagation through firm networks. Our
model is intentionally parsimonious to fix ideas, but importantly, unlike standard trade models
with Constant Elasticity of Substitution across products, it does not assume that suppliers of the
same product are perfect substitutes.

Like Baqaee and Farhi (2019) our production function is CES and the production sector is
perfectly competitive. In Section 6, we find no evidence to reject homotheticity in production,
as expenditure shares do not vary non-linearly with relative prices. Section 5.1 tests our model’s
market power assumption, showing no evidence of market power based on pair-wise buyer-seller
bargaining (Alviarez et al., 2023) or the Herfindahl-Hirschman Index. It is important to note that
the estimate of complementarity across suppliers does not make our analysis inconsistent with
market power. They are, however, not consistent with a simplified model of monopolistic competi-
tion where firms set prices by adding a constant markup to marginal cost based on the elasticity of
substitution in demand. Although these simpler models are valuable in many other contexts involv-
ing market power, they are not well-suited for situations where the specific relationships between
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buyers and sellers make substitution difficult (Acemoglu and Tahbaz-Salehi, 2024).7

We embed the estimated elasticities in our model and quantify how input complementarities
at the firm level affect aggregate economic outcomes. Considering a firm’s full network is a highly
computationally demanding task. In our case, it involves inverting a 94,555 by 94,555 input-
output matrix.8 We apply state-of-the-art techniques from computer science to our input-output
matrix to derive the full connectivity of each firm. Compared to our baseline case (ε = 0.55), we
find that the quarterly fall in GDP induced by a negative 25% shock to firms in Red zones would be
2.68pp less in a model where firms in the same HS-4 product category are substitutes (ε = 2) and
0.99pp more when they are almost Leontief (ε = 0.001).9 The additional losses due to firm-level
complementarities translate into a GDP loss of 870 million USD, which is about 25 USD per capita
per quarter, or about 3% of per capita per quarter average GDP of that state. Additionally, under
our estimated elasticity, the shock to Red zone firms spreads widely through the network to other
parts of the economy.

In our policy counterfactuals, we quantify the importance of firm connectivity separately
from firm size and the effects of allowing the most connected firms (measured by all direct and
indirect connections) to operate during lockdowns as opposed to allowing the most directly con-
nected firms to operate. In policy and academic circles, much importance has been paid to large
firms, as Hulten (1978) emphasized the importance of firm sizes in the propagation of shocks
through production networks. We show that controlling for size, the fall in GDP is much larger if
the most connected firms are affected compared to the least connected or a random set of firms.
The importance of the most connected firms increases non-linearly with the size of the negative
productivity shock and decreases as firms become more substitutable. Finally, we quantify how
important it is to also consider a firm’s indirect connectivity and find that under our elasticity and
a negative productivity shock of 25%, the fall in GDP would be 2.56pp less if the most connected
firms were allowed to operate during the lockdowns compared to only allowing the directly con-
nected firms (counting only the number of direct buyers) to operate.10 We see that as the shock
gets larger, the difference in aggregate GDP between these two experiments rises, emphasizing the
importance of measuring a firm’s indirect connections as well.

Related Work. Our paper contributes to two strands of the literature. First, we contribute to the
literature on shock propagation and amplification through supply chains and production networks

7See Section 5.1, paragraph “Market power, variable prices, and bargaining" for a more detailed discussion on this.
8As a reference, the typical sector-level input-output matrix from the BEA 2012 is 405 by 405.
9We find that a 25% productivity shock to firms in Red zones reduces GDP by 10.95%. As an empirical benchmark,

the state’s annual GDP fell by 11.3% in 2020/21.
10A firm’s indirect connections measure not only the number of direct buyers of a supplier but also the buyers’

buyers and their buyers, and so on.
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(Barrot and Sauvagnat, 2018; Carvalho et al., 2021; Peter and Ruane, 2022; Boehm et al., 2019;
Korovkin and Makarin, 2020; Ferrari, 2022; Dew-Becker, 2023; Huneeus, 2018; Arkolakis et al.,
2023).11 A crucial parameter determining the degree of shock propagation through supply chains
is the firm-level elasticity of substitution across suppliers within the same product category.

Existing work has estimated firm-level elasticities of substitution between product categories
or between domestic and foreign industries (Peter and Ruane, 2022; Carvalho et al., 2021; Boehm
et al., 2019; Atalay, 2017), but not the elasticity of substitution across suppliers of the same product
code. The challenge highlighted by this literature in estimating the elasticity across suppliers
within a product category lies in the fact that most firm-to-firm datasets do not contain product-
level (unit) prices from each supplying firm to a buying firm, or lack the required variation in such
prices to estimate these elasticities.12 The lack of firm-level elasticities across suppliers has so far
constrained our assessment of the importance of nodal firms, such as the most connected firms, in
the propagation of shocks through production networks.

Our unique data and environment allow us to overcome these challenges credibly. First, In-
dia’s lockdown policies allow us to isolate variation in the ability to produce and transport goods,
which reflect variation in prices across suppliers. Second, our new granular and high-frequency
administrative data on the universe of firm-to-firm transactions, has unique information on unit
values and HS-product classifications. This previously unused data on prices and quantities, com-
bined with exogenous variation in lockdown-induced prices induced, allows us to estimate new
elasticities at the firm level and across different suppliers of a product.

We contribute to the literature in each of these dimensions. First, we measure unit val-
ues (prices) and quantities at the transaction (seller-buyer-product-time) level. We derive price
changes from supply and transportation disruptions in lockdown-affected districts and estimate the
firm-level elasticity of substitution between suppliers within a product category. We then quantify
how this elasticity amplifies firm-specific supply shocks through a roundabout production network
(Baqaee and Farhi, 2019).13 Finally, given the presence of complementarity across suppliers of
the same product, we address previously unanswered questions on the importance of firms’ overall
connectivity within a production network for the amplification of shocks. We leverage computa-
tional innovations in big data to compute the second-order effects of productivity shocks using the

11See Bernard and Moxnes (2018) and Carvalho and Tahbaz-Salehi (2019) for a comprehensive literature review.
12Carvalho et al. (2021) observe a binary measure of whether firms were connected via buyer-supplier relationships

rather than quantities and unit values associated with such transactions. They use a proportionality assumption, which
precludes estimating the elasticity of substitution across suppliers within a product category, as a buyer sourcing from
two suppliers in the same industry will source the same amount given the assumption. Although lacking firm-to-firm
price data, Dhyne et al. (2022) structurally estimate a similar elasticity in the context of imperfect competition models
where they restrict the elasticity to be larger than 1 for mark-ups to be relevant.

13Prior work has highlighted the aggregate implications of supplier churn (Baqaee et al., 2023; Khanna et al., 2022).
We focus on the substitution among suppliers given a fixed set of suppliers as in Baqaee and Farhi (2019).
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entire matrix of production linkages between firms and industries. This innovation helps quan-
tify the non-linear effects of productivity shocks directly using the network without relying on
approximations using final sales.14

Our paper is also related to research on trade collapses during adverse shocks (Behrens et al.,
2013; Giovanni and Levchenko, 2009; Bricongne et al., 2012), and shock transmission through
GVCs during the Covid-19 pandemic via disruptions to imports, exports, or aggregate production
(Bonadio et al., 2021; Baqaee and Farhi, 2020; Cakmakli et al., 2021; Demir and Javorcik, 2020;
Gerschel et al., 2020; Heise, 2020; Lafrogne-Joussier et al., 2022; Bas et al., 2023; Chakrabati
et al., 2021; Khanna et al., 2022; Miranda-Pinto et al., 2022). In contrast, we analyze how domestic
transactions were affected during lockdowns in a large developing country. Our policy motivation
stems from the observation that policymakers worldwide are interested in quantifying the trade-off
between strict lockdowns that affect GDP through complex buyer-seller networks and more lenient
measures that increase production and trade.

While we hesitate to use these elasticities for exercises on long-term structural transforma-
tions (Peter and Ruane, 2022), our estimates speak to responses to large unexpected shocks. Our
paper has a limited discussion on the pandemic itself, as we simply rely on Covid-19 to generate
identifying variation. Even beyond the Covid-19 crisis, our estimates of how substitutable suppli-
ers are within a product category will help policymakers quantify the economy-wide effects of any
disruptive events (e.g., natural disasters, wars, supply-chain disruptions, or sanctions) on trade and
production that are expected to be reasonably short-lived.

2 DATA AND CONTEXT

Firm-to-firm trade. Our primary data source is daily establishment-level transactions with dis-
tinct information on establishment locations. While we use the term “firm" throughout the paper,
our data is actually at the more granular establishment/plant level, and we can identify the par-
ent firms for each establishment as well. This allows us to identify the precise location of each
establishment. The data is provided by the tax authority of a large Indian state with a diversified
production structure, around 50% urbanization rates, and high levels of population density. To
benchmark the size of this Indian state to other firm-to-firm trade datasets, the population of this
state is roughly three times the population of Belgium, seven times the population of Costa Rica,
and double the population of Chile.

The data contains daily transactions between all registered establishments in this state and
14As firm-to-firm data become common (Panigrahi, 2021; Demir et al., 2024; Dhyne et al., 2021; Alfaro-Urena

et al., 2022; Chacha et al., 2022), our methods can be used to quantify shock propagation through complex networks.
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all registered establishments in India and abroad from April 2018 to October 2020.15 This data is
collected by the tax authority’s E-way Bill system to increase compliance for tax purposes. This is
an advantage over standard VAT firm-to-firm trade datasets in developing countries, which suffer
from severe under-reporting. By law, anyone dealing with the supply of goods and services whose
transaction value exceeds Rs 50,000 (700 USD) must generate E-way bills. Transactions with
values lower than 700 USD can also be registered, but it is not mandatory. The E-way bill is
generated before transport (usually via truck, rail, air, or ship), and the vehicle driver must carry
the bill with them, or the entire extent of goods can be confiscated. Our data is generated from these
bills. This implies that our network is representative of relatively larger firms, but the threshold is
sufficiently low that we are likely capturing small firms as well.

Each transaction reports a unique tax code identifier for both the selling and buying estab-
lishments, all the items contained within the transaction, the value of the whole transaction, the
value of the items being traded up to 8-digit HS codes,16 quantity of each item, unit, and mode
of transportation. Each transaction also reports the ZIP code of both the selling and buying firms,
which we use to merge with other district-level datasets.

Since the data report both value and quantity of traded items, we construct unit values for
each transaction. We then calculate average unit values at the product-by-time-by-seller-by-buyer
level, the number of transactions, and the total value of the goods transacted. This is the foundation
of our firm-to-firm dataset used in the analysis.17

Lockdowns. On March 25, 2020, India unexpectedly imposed strict lockdown policies nation-
wide. Districts were classified into Red, Orange, and Green zones according to each district’s
severity of Covid-19 cases. Each color corresponds to different lockdown degrees, where Red was
severe lockdown, Orange was medium lockdown, and Green was mild. Yet, at that time, there
were barely any Covid-19 cases in India, as the entire country averaged about 50 cases a day (as
opposed to about 400,000 cases a day the following year).

15Our analysis focuses on the periods between April 2019 and October 2020, surrounding the pandemic.
16The data partially reports items up to 8-digit HS codes. Until April 2021, in India, it was only mandatory to report

4-digit HS codes of goods traded (See the Economic Times). 97% of transactions report 4-digit HS codes, and 40%
report 8-digit HS codes. Given this, our main specifications are based on 4-digit HS codes, and we show robustness
using HS-8 codes. Sub-products within 4-digit HS codes are sufficiently similar for our purposes. For example, HS
code 0905 is vanilla, 1508 are groundnut oils, and 1605 are crustaceans, mollusks, and other aquatic invertebrates,
prepared or preserved.

17In the large majority of cases, units are consistent at both the seller-by-buyer-product-by-month level or buyer-
product-by-month level. The median number of units reported at the buyer-product-month level is 1, and the average
number is around 1.1. We also calculate the level of concentration sales of a given a unit at the seller-buyer-product-
month level. A Herfindahl-Hirschman Index (HHI) close to 1 would imply that units are mostly consistent. The
median HHI is 1, and average HHI is 0.97.
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FIGURE 1: India’s Covid-19 lockdown zones

Notes: The map shows the lockdown zones across Indian districts announced on March 25, 2020.

In Figure 1, we map the distribution of lockdowns across India. Districts in the Red zone
experienced the strictest lockdowns, where rickshaws, taxis and cabs, public transport, barbers,
spas, and salons remained shut. E-commerce was allowed for essential services. Orange and
Green zone districts experienced fewer restrictions. Orange zones allowed the operation of taxis
and cab aggregators, as well as the inter-district movement of individuals and vehicles for permitted
activities. In addition to the activities allowed in Orange zones, buses were allowed to operate with
up to 50% seating capacity and bus depots with 50% capacity in Green zones.18 Throughout the
paper, we use this color scheme as the treatment across Indian districts. In particular, each treated
firm is located in a Red or Orange district, while each control firm is located in a Green district.

Physical and cultural distance. We use different measures of distance, which we include as
controls in our empirical results. The measures of geographic distance between districts calculate
the length of the shortest distance between district centroids. The measure of linguistic distance
between Indian districts is from Kone et al. (2018) using the commonly used ethnolinguistic frac-
tionalization (EFL) index (Mira, 1964). This index measures the probability of two randomly
chosen individuals from different districts speaking the same language.

18See the Economic Times. On April 30, one Red zone district was reclassified to the Green zone, but we maintain
the initial classification as it is likely to be more exogenous.
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Other controls. We control for different firm and district-level time-varying variables such as
data on the monthly number of cases, deaths, and recoveries from Covid-19 for all of India at
the district level from Covid India. For each firm, we construct two variables that measure the
firm’s exposure to global demand and supply shocks that vary at the product and country level,
following Hummels et al. (2014). The construction of these exposure variables is described in
detail in online data Appendix C. Finally, we obtain data on inventories at the product-level, from
the Prowess database collated by the Center for Monitoring Indian Economy (CMIE).

Summary statistics. We present some key summary statistics from our firm-to-firm trade dataset
in Tables A1-A4 and Figures A1-A2. They report the unique numbers of sellers and buyers, total
sales (in million rupees), and total number of transactions during the months of January-March,
April-June, and July-September for both 2019 and 2020. The most noticeable pattern is the large
drop in all variables in 2020 compared to 2019, particularly during the April-June period, which
coincided with the lockdown policies. The total value of sales and the number of transactions fell
by almost 60% during April-June of 2020 compared to 2019.

The characteristics of the network, including measures of network in-degree (i.e., number
of sellers per buyer) and outdegree (i.e., number of buyers per seller), are in Tables A2 and A3.
Similar to other production network datasets, our network is sparse. In terms of network indegree,
for 4-digit HS products, the median buyer has 2 suppliers per product but 6 suppliers on average
with a standard deviation of 17. In terms of network outdegree, the median seller has 5 buyers
but 64 buyers on average, with a standard deviation of 532. Finally, the sparsity of the network
increases with the narrowness when defining a product and the frequency of the data.

To further understand the composition of economic activity of the Indian state of our analysis,
in Table A4, we show the types of goods firms sell and buy and what fraction crosses state and
country borders. In our state, firms are mostly in the business of selling vegetables, plastics, and
minerals and buying machinery, metals, and vegetables. In terms of the type of trade, firms in our
state are more likely to sell to other firms in the state. This contrasts with how firms in our state
buy goods, where the share of purchases that come from within the state is almost the same as from
other Indian states. Finally, international exports and imports represent a non-negligible but small
share of sales and purchases.

Before using the lockdown variation to understand how firm-to-firm transactions are affected,
we verify the stringency of these lockdowns in Figure A2 using Google mobility data. The data
shows how the number of visitors to (or the time spent in) categorized places changes in compari-
son to baseline days. The baseline day is the median value from the 5-week period Jan 3 – Feb 6,
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2020.19 Until the beginning of March 2020, there were essentially no differences in mobility trends
across Red, Orange, or Green zones. But starting at the end of March 2020, we see that there is
a substantial reduction in different types of activities (time spent in retail and recreation, grocery
and pharmacy, parks, commuting, and workplaces) in Red zones compared to Green zones; with
Orange zones in between. People in Red zones also spent more time at home than people in either
Orange or Green zones. We notice that starting in August 2020, a few months after the central-
ized lockdown was over, these differences reduced, and by December 2020, these differences,
especially in workplace mobility, become negligible.

3 REDUCED-FORM EVIDENCE

In this section, we outline a simple empirical specification to provide evidence showing the role
of lockdown policies on key outcome variables for firm-to-firm trade. We show that the sudden
Covid-19 lockdown policies between March and May 2020 led to a rise in unit values and a fall in
the monthly number of transactions between firms.20 In the next section, we exploit this variation
to estimate firm-level elasticities of substitution across intermediate suppliers of the same product.

3.1 Empirical specifications

Our reduced-form specifications implement a difference-in-differences approach where we com-
pare the unit values and the number of transactions both at the seller and seller-buyer level across
Red, Orange, and Green districts, before and after the lockdown. In our analysis at the seller level,
the omitted (control) group are sellers located in Green districts and the base month is February
2020, the month before the lockdown enforcement. At the seller-buyer level, the omitted groups
are sellers and buyers located in Green zones, and the base month is February 2020.

Seller-level regressions. We estimate the following specification:

Ys,i,t = ωo(s),i +ωi,t +

∑
t 6=−1

βtRedo(s) +

∑
t 6=−1

γtOrangeo(s) + Xδ + εs,i,t , (1)

where Ys,i,t are either unit values or the log number of transactions for seller s of product i in
month t, ωi,t are product-by-time fixed effects, ωo(s),i are product-by-district fixed effects (i.e. fixed

19See the Google Covid-19 Community Mobility Reports.
20To see a similar application of this empirical strategy for domestic violence and economic activity in India, see

Ravindran and Shah (2020) and Beyer et al. (2021).
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effects based on the district o where seller s resides). Product-by-time fixed effects control for any
unobserved demand shocks at the product level. X are controls that include the number of Covid-
19 cases, deaths, recoveries, and exposure to international demand and supply shocks as discussed
in Appendix C. We control for the Covid-19 cases and deaths since these are the variables on
which the government based its lockdown decisions (Ravindran and Shah, 2020). The covariates
of interest are Redo(s) and Orangeo(s) . The first is an indicator variable that equals 1 if seller s located
in district o(s) experienced a severe lockdown, 0 otherwise. The second equals 1 if seller s located
in district o(s) experienced a mid-level lockdown, 0 otherwise. The excluded category is Greeno

districts, where mild lockdown was imposed. The estimates of interest are βt and γt . Our base
time category is February 2020, just before lockdowns began. Standard errors are clustered at the
seller’s origin district level.

Seller-buyer level regressions. At the seller-buyer level, we estimate the specification:

Ys,i,b,t =
∑

(v,z)∈Ω

∑
t 6=−1

βvz
t

(
γv

o(s)
×γz

d(b)

)
+ δo(s) + δd(b) + δi,t +β1 log disto(s),d(b) + Xδ + εsi,b,t , (2)

where Ys,i,b,t are unit values or the number of transactions in logs between seller s of product i and a
buyer b in time t. δo(s) , δd(b) , and δi,t are origin, destination, product-by-time fixed effects. disto(s),d(b)

is a vector of cultural and geographic distance variables, and X are controls that include the number
of Covid-19 cases, deaths, recoveries, and exposures to international demand and supply shocks.
The first term of the right-hand side contains our estimates of interest. (v,z) ∈ Ω is a duple that
contains the color y of seller’s district, and the color z of buyer’s district. Ω is the set that includes all
pairs except (Green,Green), such that this is the excluded category when estimating Equation (2).
γv

o(s)
and γz

d(b)
are thus indicator variables that equal 1 when seller s is located in district o located in

lockdown zone v, and when buyer b is located in district d located in lockdown zone z, respectively.
The estimates of interest are βvz

t . Our base time category is February 2020, just before lockdowns
began. Standard errors are two-way clustered at the origin and destination district levels.

3.2 Reduced-Form Facts

Fact 1: Sellers’ unit values disproportionately rose, and trade fell in more severe lockdown
zones. The first two panels of Figure 2 plot the coefficients βt and γt from Equation (1), repre-
senting changes in log unit values and log number of transactions with respect to Green districts in
February 2020 (the base category). In May 2020, sellers’ unit values in Red districts rose by 25pp,
and in Orange districts rose by around 10pp with respect to the base category.
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FIGURE 2: Seller-level reduced-form event studies

(a) Unit value, 4-digit HS (b) # Transactions, 4-digit HS

(c) Unit value, 8-digit HS (d) # Transactions, 8-digit HS

(e) Unit value, 8-digit HS, strong FEs (f) # Transactions, 8-digit HS, strong FEs

Notes: This figure consists of 6 plots. Each plot shows estimates for βt and γt from Equation (1). The estimated
values are all in comparison to sellers in Green districts in February 2020. The dependent variable for the plots on
the left-hand side is log unit values. The dependent variable for the plots on the right-hand side is the log number of
transactions. Each row varies by the definition of a product-group and the fixed effects included in the regression. In
the first row, a product is a 4-digit HS code, and the fixed effects are product-by-time and district. In the second row,
a product is an 8-digit HS code, and the fixed effects are product-by-time and district. In the third row, a product is an
8-digit HS code, and the fixed effects are product-by-time and district-by-product. Standard errors are clustered at the
district level. All controls mentioned in the paper are included. The shaded areas are 95% confidence intervals.
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At the same time, sellers’ number of transactions in Red districts declined by around 20pp,
and in Orange districts declined by around 3pp with respect to the base category. Additionally,
as expected by the severity of the lockdown policies by color, the rise in unit values and fall in
the number of transactions was larger for sellers in Red districts than for Orange ones. In both
figures, we find no evidence of pre-trends, implying that there were likely no differences in the
trends of unit values or number of transactions between Red, Orange, and Green districts before
the lockdown.

The middle two panels of Figure 2 repeat the same exercise with a finer product definition,
using 8-digit HS codes. Results remain virtually the same. In the last row of Figure 2, we include
a stronger set of fixed effects (e.g., district-by-product), and the results remain the same.

Fact 2: Equilibrium unit values rose, and the number of transactions fell in more severe lock-
down zones. We now report the results from our seller-by-buyer-level specification. In Figures
3 and 4, we report the estimates for βvz

t from Equation (2), where the estimates are in comparison
to cases when both sellers and buyers were located in Green districts in February 2020.

In the first row of Figure 3, we plot the coefficients from regression (2) where the seller is
in the Red zone, and the buyer is in Red, Orange, and Green zones respectively. Similarly, in
the second row of Figure 3, we plot the coefficients from regression (2) where the seller is in the
Orange zone, and in the third row, we plot the coefficients from regression (2) where the seller is
in the Green zone (and the buyer is in Red and Orange zones respectively).

There are two main takeaways from these figures. First, even after controlling for bilateral
resistance terms, trade costs, and additional covariates, unit values rose, and the number of trans-
actions fell with respect to the base category (both buyer and seller in Green zones). The rise in
unit values was as much as 45pp, and the fall in transactions was as high as 12pp. Second, these
changes seem proportional to the severity of the lockdowns for both sellers and buyers. For in-
stance, transactions plummet for red zone sellers, relative to other sellers. Once again, there is no
evidence of differential pre-trends across zones leading up to the shock.

Our two facts jointly imply that prices, where either sellers or buyers were located in Red

districts, were higher during the lockdown compared to districts where the lockdowns were mild
(Green zones). As such, the lockdown induced variation in prices that we will later leverage to
estimate elasticities of substitution across intermediates.

14



FIGURE 3: Unit Value, Seller-Buyer-Level Regressions

Notes: This figure consists of 8 plots. Each plot shows estimates for βvz
t from Equation (2). The values of the estimates

are all in comparison to sellers and buyers both in Green districts in February 2020. The vertical line in January 2020
splits months into pre and post-lockdown. The dependent variable for the plots is the log unit value. A product is a
4-digit HS code. Regressions include product-by-time, origin, and destination-district fixed effects. Standard errors
are two-way clustered at the origin and destination district levels. All controls mentioned in the paper are included.
The color of the line denotes the color of the seller’s district, while the color of the shaded 95% confidence interval
denotes the color of the buyer’s district.

4 ESTIMATING THE ELASTICITY OF SUBSTITUTION ACROSS

SUPPLIERS OF THE SAME PRODUCT AND ACROSS PRODUCTS

In Section 3, we showed that during the lockdown, prices increased whenever the sellers were
located in red and orange zones compared to their green-zone counterparts. Here, we examine
whether buyers were able to adjust their input expenditure shares away from the more affected
suppliers towards less affected suppliers (for a particular product). We thus estimate the elasticity
of substitution across suppliers by quantifying the causal response of plant intermediate input use to
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FIGURE 4: Number of Transactions, Seller-Buyer Level Regressions

Notes: This figure consists of 8 plots. Each plot shows estimates for βvz
t from Equation (2). The values of the

estimates are all in comparison to sellers and buyers both in Green districts in February 2020. The vertical line in
January 2020 splits months into pre and post-lockdown. The dependent variable for the plots is the log number of
transactions. A product is a 4-digit HS code. Regressions include product-by-time, origin, and destination-district
fixed effects. Standard errors are two-way clustered at the origin and destination district levels. All controls mentioned
in the paper are included. The color of the line denotes the color of the seller’s district, while the color of the shaded
95% confidence interval denotes the color of the buyer’s district.

changes in its supplier’s intermediate input prices. In Equation 3 below, we estimate how spending
shares on a given material input i from supplier s relative to total spending on input i change in
response to changes in the relative price of input i from supplier s.

log
(

PMs,i,b j

PMi,b j

)
= (1 − ε) log

(
ps,i,b j

pi,b j

)
+ log

(
µs,i,b j

)
, (3)

where PMs,i,b j is the expenditure by buyer b producing product j on product i from supplier s. ps,i,b j

and xs,i,b j are the corresponding prices and quantities, respectively. PMi,b j is the total expenditure
by buyer b producing j on input i, across all sellers s. pi,b j =

(∑
s′
(

p1−ε
s′,i,b jµs′,i,b j

)) 1
1−ε is a Con-
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stant Elasticity of Substitution (CES) price index, PMs,i,b j ≡ ps,i,b jxs,i,b j, and PMi,b j ≡
∑

s PMs,i,b j.
log
(
µs,i,b j

)
is the error term. This is the underlying basis for our estimation of the firm-level elas-

ticity of substitution parameter ε, as will be described in detail in Section 4.1. When elasticities
are independent of the magnitudes of the price change, such as in a standard CES framework,
and such price changes are exogenous, the coefficient (1 − ε) in Equation 3 identifies the elasticity
of substitution across suppliers. Note that the results of this estimation procedure hold with any
CES production function with an arbitrary number of nests as long as the lowest nest consists of
suppliers within the same product. While CES has been the dominant production function used
in the majority of the literature due to its tractability, empirical, and theoretical feasibility (Broda
and Weinstein, 2006; Barrot and Sauvagnat, 2018; Carvalho and Tahbaz-Salehi, 2019), it is less
applicable if we expect a non-linear relationship between expenditure shares and relative prices, as
in the case of non-homothetic production functions. In Section 6 we show evidence for the validity
of the CES assumption in our setting.

Similar to previous work (Atalay, 2017; Peter and Ruane, 2022; Boehm et al., 2019; Car-
valho et al., 2021), we additionally estimate the elasticity of substitution across products using the
following estimating equation:

log
(

PMi,b j

PMb j

)
= (1 − ζ) log

(
pi,b j

pb j

)
+ log

(
wi,b j

)
, (4)

where pb j =
(∑

i′

(
p1−ζ

i′,b jwi′,b j

)) 1
1−ζ

is a CES price index, PMi,b j ≡ pi,b jxi,b j, and PMb j ≡
∑

i PMi,b j.

log
(
wi,b j

)
is the error term. This is our estimating equation for the firm-level elasticity of substitu-

tion ζ , which we take to the data, as described in Section 4.1.

4.1 Estimation Strategy

This section discusses how we estimate the primary elasticities in our model, the vector of param-
eters θ̂ = (σ,α,ζ,ε). We set the elasticity of substitution between different consumption varieties
σ = 4 (Broda and Weinstein, 2006), and the elasticity of substitution between labor and the compos-
ite intermediate input α = 0.5 (Baqaee and Farhi, 2019). We now estimate the firm-level elasticity
of substitution across suppliers (ε) and the firm-level elasticity across products (ζ) leveraging vari-
ation in the lockdown zones.
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4.1.1. Estimating equations for ε

We face two main challenges when estimating ε from Equation (3). The first challenge is that
the input i price index faced by buyer b (pi,b j) is a function of the unobservable importance of
input suppliers

(
µs,i,b j

)
. To address this challenge, we follow two strategies. In the first one, we

include buyer-product-time fixed effects that subsumes the unobserved terms. Note that, our unique
data directly observes transaction level prices by product, allowing us to include buyer-product-
time fixed effects. In the second one, we follow Redding and Weinstein (2020) and where the
overall importance of a product in a buyer’s input use remains constant, such that we can construct
pi,b j solely as a function of prices ps,i,b j. While using the first strategy, the buyer-product-time
fixed effects absorb the price index, the second strategy yields a direct measure of the buyer-input
level price index. This price index is useful when we later estimate the upper-nest elasticity of
substitution across products, as elaborated in Section 4.1.2.

The second challenge arises if new buyer and seller relationships form, that is, the extensive
margin of trade changes. To account for this extensive margin for the estimation, we construct
and leverage variation in counterfactual prices. Our unique data allow us to construct prices of
transactions that did not happen in a particular period because the seller did not trade with a certain
buyer that period (but could have traded with the same buyer before or after).

Addressing unobservable importance of input suppliers through fixed effects As discussed,
to address the first challenge of unobservable importance of input suppliers entering the price
index, we follow two strategies. First, we estimate ε by including a product-buyer-time fixed effect(
ωi,b j,t

)
, as in Equation 5 below. This is a demanding specification that, for instance, absorbs any

demand shocks at the buyer-by-product level. This includes, for example, shocks to retail demand
and retail distribution costs for the buyer’s products (Crucini and Davis, 2016). We can also include
seller-by-product-by-time fixed effects, and solely rely on variation in the cost of transporting a
particular product from a certain seller to a particular buyer.

log
(

P̂Ms,i,b j,t

)
= ωi,b j,t +ωs,i,t + (1 − ε) log

(
p̂s,i,b j,t

)
+Xδ + ξs,i,b j,t (5)

We show coefficient stability across various sets of high-dimensional fixed effects and speci-
fications. Across the various specifications, the wide array of high-dimensional fixed effects helps
control for demand shocks (buyer-by-time fixed effects or buyer-by-product-by-time fixed effects),
product-level changes in demand or supply (product-by-time fixed effects or buyer-by-product-by-
time fixed effects), buyer-by-seller and product-specific time-invariant characteristics (buyer-by-
product and seller-by-product fixed effects), and/or quality/supply shocks or time-varying markups
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(seller-by-product-by-time fixed effects). The remaining variation isolates time-varying changes
across sellers within a product category. Further, as we explain in Section 4.2, we strengthen this
framework by leveraging the mosaic of Covid-19 lockdowns to derive exogenous policy-induced
variation in relative prices.

Identifying Variation: In Section 4.2 below, we introduce two different instrumental variables
strategies that leverage policy-induced variation in price shocks. Yet, the various high-dimensional
fixed effects in the OLS formulation also speak to what is driving our identifying variation. Price
variation may be driven by buyer-by-product specific shocks (buyer power, downstream demand
shocks, etc.), seller-by-product specific shocks (changes in marginal cost of production, seller
market power, etc.), or bilateral-product specific shocks (transportation costs). When conditioning
on ωi,b j,t we control for buyer-product-time shocks, including any demand shocks. When including
seller-by-product fixed effects, we additionally control for time-invariant characteristics of a seller-
product, but still allow for shocks (over time) to say the cost of production. Including ωs,i,t , further
absorbs the shocks to the cost of production, and so the remaining variation is solely driven by
buyer-seller-product-time level variation (e.g., shocks to transportation costs). While stringent and
conservative, researchers may not wish to always control for ωs,i,t as it may absorb part of what is
good identifying variation, coming from changes in marginal costs. We show coefficient stability
across all sets of fixed effects.

Addressing unobserved importance of input suppliers by directly constructing the price in-
dex: In our second method, we directly construct changes in aggregate prices pi,b j,t . This ap-
proach is necessary because when estimating the elasticity of substitution across products in Sec-
tion 4.1.2, we need to use this price index as the measure of the product-level price that a buyer
faces. To construct these price indexes, we follow the method in Redding and Weinstein (2020),
which assumes that the overall importance of a product in a buyer’s input use does not change
between two consecutive periods, even though the importance of inputs from suppliers within a
product category can change.21 This enables us to construct changes in price indices that are not
dependent on µsi,b j,t , but are directly observed in the data (details in Appendix D.1.2). Under this
assumption, we derive Equation 6, which links the overall expenditure share on a certain supplier

21This assumption requires that, for instance, a shoemaker’s overall preference for leather in shoe manufacturing
does not change, although its preference for leather from certain suppliers can change. Demand shocks may change
µsi,b j,t (e.g., the demand for leather from certain suppliers), but the geometric mean of µsi,b j,t across suppliers within a
product is stable between t and t − 1.
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s (as a share of total expenditure on product i) to the corresponding relative prices:

log

(
P̂Ms,i,b j,t

P̂Mi,b j,t

)
= ωb j,t +ωi,t +ωb j,i +ωs,i + (1 − ε) log

(
p̂s,i,b j,t̂̃pi,b j,t

)
+ log

(
λ̂i,b j,t

̂̃s∗i,b j,t

)
+ Xδ + ξs,i,b j,t ,

(6)

where v̂t = vt
vt−1

are variables in changes to the previous month.
[
ωb j,t ,ωi,t ,ωb j,i,ωs,i

]
is a set of fixed

effects, including buyer-by-time, product-by-time, buyer-by-product, and seller-by-product fixed

effects. p̃i,b j,t =
∏

s∈Ω∗i,b j,t
p

1
N∗i,b j,t
s,i,b j,t is a geometric mean of unit values across common suppliers, where

Ω∗i,b j,t ≡ Ωi,b j,t ∩Ωi,b j,t−1 is the set of common suppliers for buyer b that appears in both the current
and previous month, and N∗i,b j,t ≡ Ω∗i,b j,t is the number of common suppliers for buyer b in month t.

This strategy has three main advantages. First, it allows us to construct price indices pi,b j,t

solely as a function of prices ps,i,b j,t , independent of the unobservable importance of input suppliers
µs,i,b j,t . Second, under the same assumption, the constructed price indices pi,b j,t naturally generates
two controls to be included in the estimation: the change in expenditure share s̃∗i,b j,t ≡

PMsi,b j,t∑
s∈Ω∗i,b j,t

PMsi,b j,t

and a Feenstra (1994) correction term λi,b j,t ≡
∑

s∈Ω∗i,b j,t
PMsi,b j,t∑

s∈Ωi,b j,t
PMsi,b j,t

. The key control is the latter since it

accounts for the entry and exit of sellers in product i for buyer b in period t. More details are in
Appendix D.1.3. Finally, as described in more detail in Section 4.1.2, this strategy allows us to
estimate the elasticity of substitution between products (ζ) by allowing us to construct the price
index that buyer b faces for input i at time t. Standard errors are two-way clustered at the origin and
destination state levels. X are controls, including exposure to foreign demand and supply shocks,
the number and severity of Covid-19 cases, and geographic and cultural distance.

Accounting for the extensive margin of trade. In extensions, we further account for the ex-
tensive margin of trade. Our main estimating Equation 6 is estimated based on a firm’s existing
suppliers, and the elasticity of substitution ε dictates a buyer’s ability to substitute inputs between
its suppliers. Nevertheless, sellers and buyers may decide to trade for unobservable reasons, thus
changing the extensive margin of trade. To account for this extensive margin for the estimation,
we introduce the notion of a counterfactual supplier for a buyer. A counterfactual supplier of buyer
b at time t is defined as a supplier who has ever traded with that buyer in our sample period and
supplies to other buyers at month t, but not to that particular buyer at month t.

We expand our estimating equation to include all counterfactual suppliers of a buyer. A
counterfactual supplier, therefore, accounts for potential suppliers of a buyer b at time t– suppliers
who at some point traded or could trade with b and supplied inputs to other buyers in period t. A
counterfactual supplier also accounts for supplier links of a buyer b that no longer exist in period
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t, even though this supplier continues supplying to other buyers. While the expenditure share by
buyer b on inputs from a particular seller s of product i can be zero in periods that the trade does not
happen, in those periods, we still need the notion of a counterfactual price. The advantage of our
data is that it uniquely reports transaction-level prices. As a result, we can construct counterfactual
prices in those time periods as the average price that seller s would charge to other buyers, as given
by Equation 7 below.

ps,i,b j,t ≡

∑
s∈Ωi,b j,t

∑
b∈Φs∈Ωi,b j,t

PMs,i,b j,t∑
s∈Ωi,b j,t

∑
b∈Φs∈Ωi,b j,t

Qs,i,b j,t
, (7)

where Ωi,b j,t ≡Ωi,b j −Ωi,b j,t . Ωi,b j,t is the set of sellers in product i that traded with buyer b in period
t, Ωi,b j is the set of potential sellers with buyer b in product i.22 Therefore, Ωi,b j,t is the set of
counterfactual sellers as defined above.

Φs∈Ωi,b j,t
is the set of buyers that traded with seller s in product i in period t. For the con-

struction of these counterfactual prices to be relevant, the prices charged by a seller at a particular
time should be approximately the same across all buyers; that is, the counterfactual price will be
difficult to measure if the seller charges different prices across buyers within the same year-month.
In Figure A3, we plot the residuals from regressing prices on seller-by-product-by-time fixed ef-
fects. The figure shows that these residuals are concentrated around 0, suggesting that sellers do
not charge different prices to different buyers for the same product within a year-month.

The estimating equation, after substituting the Feenstra (1994) term with the stronger buyer
time fixed effects and accounting for the extensive margin of trade, is given below:

log(PMsi,b j,t) = ωi,b j,t +ωs,i + (1 − ε) log
(

ps,i,b j,t
)

+Xδ + ξs.i,b j,t . (8)

To account for the zeros on the left-hand side of the estimating equation, we estimate ε via
Poisson Pseudo-Maximum Likelihood (PPML).

4.1.2. Estimating equations for ζ

Now, to estimate ζ from Equation (4), there are two issues to address. First, notice that the
price index pi,b j,t is a function of (unobservable) demand shocks µsi,b j,t , and ε, such that pi,b j,t ≡(∑

sµs,i,b j,t p1−ε
s,i,b j,t

) 1
1−ε . Second, the price index pb j,t is also a function of unobservable product-level

demand shocks wi,b j,t , making their computation challenging.

First, we construct price indices as pi,b j,t ≡
(∑

sµsi,b j,t p1−ε̂
si,b j,t

) 1
1−ε̂ , where ε̂ is estimated previ-

22The set of potential sellers of buyer b is constructed based on the buyer’s purchase record between April 2018 and
October 2020.
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ously, psi,b j,t comes directly from the data, and demand shocks µsi,b j,t are constructed recursively.
This recursive construction of demand shocks comes from predicting residuals from Equation (6)
and setting an initial value for shocks µsi,b j,0 (Appendix D.2.2).

Second, we construct buyer-level price indices pb j,t following Redding and Weinstein (2020).
We assume that the overall importance of the composite intermediates at the product-level in the
production function does not change between consecutive months. As such, we can construct this
price independent of product-level demand shocks wi,b j,t after controlling for buyers’ expenditure
shares by product. More details are in Appendix D.2.1.

We then derive the following expression we take directly to the data:

log
(

P̂Mi,b j,t

)
= ωb j,t +ωi,t +ωb j,i + (1 − ζ) log

(
p̂i,b j,t

)
+Xδ + ξi,b j,t , (9)

where
[
ωb j,t ,ωi,t ,ωb j,i

]
are a set of buyer-by-time, product-by-time, and buyer-by-product fixed

effects, which again account for a wide array of demand shocks, product shocks, and buyer-product

specific characteristics. X are the same set of controls used before. p̃b j,t ≡
∏Nb j,t

i=1 p̃
1

Nb j,t
i,b j,t is the

geometric mean of unit values across products that buyer b purchases, and s̃b j,t ≡
∏Nb j,t

i=1 s̃
1

Nb j,t
i,b j,t is the

geometric mean of expenditure shares across products. Detailed derivations are in Appendix D.2.

4.2 Addressing endogeneity concerns

Despite the wide range of fixed effects, Ordinary Least Squares (OLS) estimates of ε may still be
biased if additional unobserved demand-side shocks (changing µs,i,b j,t) drive changes in prices and
expenditure shares. The firm-level elasticity of substitution is a function of the slope of the buyer’s
input demand curve, and hence, simultaneous shifts in the demand and supply curves induced by
the Covid-19 shock would bias our estimates. For example, if Covid-19 induced demand shocks
led to contractions in buyers’ income and, at the same time, supply shocks led to contractions in the
sellers’ supply, the demand curves will look flatter (estimated ε higher) compared to the unbiased
value of ε. Additionally, measurement error in input prices, proxied by unit values, may induce
attenuation biases.

Our estimation strategy, therefore, involves using the sudden demarcations of lockdown
zones that restrict economic activity in certain Indian districts as an instrumental variable when
estimating this equation in two-stage least squares (2SLS). We use the disruptions in prices caused
by sudden lockdowns that made it costlier for sellers in Red and Orange zones to produce and send
their intermediate goods. The idea is that, after controlling for the wide array of fixed effects, the
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lockdown zones the buyers are located in, exposure to international demand and supply shocks,
and the number and severity of regional Covid-19 cases, the remaining variation in prices facing
a buyer are driven by supply shocks induced by policy-mandated sudden changes in the seller’s
lockdown zones. In addition, since the goods from the seller to the buyer have to transit through
several districts located in different lockdown zones facing different severity in the movements
of trucks and border controls, changes in the costs of transportation induced by these lockdowns
provide another source of exogenous variation to estimate the firm-level elasticity of substitution.

To formalize the intuition behind our identification strategy, suppose that prices can be sep-
arated between prices at the origin and a trade cost, such that

log
(

p̂s,i,b j,t
)

= log
(
τ̂s,b j,t

)
+ log

(
p̂s,i,t
)
.

Here we can see the types of variation that drive the two types of instruments we use. First,
exogenous shifters to prices at the seller level ps,i,t , such as economic restrictions induced by the
lockdown zone the seller is located in. Second, exogenous shifters at the seller-buyer level, for
example, changes in transportation costs τs,b j,t driven by the lockdown zones of the districts the
goods pass through. We now describe each of these instruments and then implement them within
our estimation strategy.

Seller-level instruments. We derive supply-side shifters to obtain unbiased elasticities of sub-
stitution. Shocks induced by the Covid-19 lockdown policies that only impact sellers provide this
variation. In Equation (10) below, we formalize this intuition.

log(p̂s,i,t) = βR,pRedo(s)Lockt +βO,pOrangeo(s)Lockt +ν p
s,i,t , (10)

where Lockt is an indicator variable that equals 1 for the months from March to May of 2020,
which are the months when the lockdown policies were implemented, 0 otherwise, and Redo(s) and
Orangeo(s) are indicator variables that equal 1 whenever seller s was located in Red or Orange

districts, respectively.

Seller-Buyer-level instruments. The transportation of supplies from the location of the supplier
to the buyer requires going through different districts, each of which is affected by lockdown
policies in different ways. Intuitively, a route containing more Red districts should increase the
cost of transportation compared to a route with no Red districts. We construct instruments that
capture that idea. We allow trade costs to change over time so that we can leverage the Covid-19
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lockdown policy. In particular, as we describe in Appendix D.1.4, we assume

log(τ̂s,b j,t) = σ log( ̂TravelTimes,b j,t).

We leverage the Covid-19 lockdown as an exogenous shifter that only influences travel time
between locations of seller s and buyer b, as reflected in Equation (11) below.

log(τ̂s,b j,t) = βR,τRedo(s)d(b)Lockt +βO,τOrangeo(s)d(b)Lockt +ντs,b j,t . (11)

Detailed derivations and estimating equations are in Appendix D.1.4. Redo(s)d(b) and Orangeo(s)d(b)

are the share of districts designated as Red and Orange, respectively, along the route between seller
s and buyer b. We construct these variables using the Dijkstra algorithm for least-cost routes. De-
tails about the implementation of this algorithm are in Appendix C.

Finally, we instrument the changes in relative prices in Equation (9) to estimate ζ . Potential
unobservable product-level demand shocks could again induce an upward bias to OLS estimates of
ζ . To construct our instruments, we leverage the seller-level and seller-buyer-level instruments we
used to estimate ε and calculate weighted averages across suppliers to instrument for the change
in relative prices for buyers. The intuition is that buyers that purchased inputs either from a larger
share of sellers in Red zones, or from sellers located in districts such that the trading routes com-
prised of manyRed zone districts were more exposed to supply disruptions induced by the Covid-19
lockdowns. More details of the instruments are in Appendix D.2.3.

LATE and Balance Tests. The instruments induce buyers of certain types to be more affected
than others based on their production networks. The Local Average Treatment Effect (LATE) may
not represent the Average Treatment Effect (ATE) if buyers in Red, Orange, and Green zones
already traded intensively with sellers in certain lockdown zones, and there is heterogeneity in
responses. For instance, if buyers in Red traded mostly with sellers in Red, then our instrument
may estimate effects on firms induced by having more Red sellers, thus upweighting effects on
buyers in Red. In Figure A4, we run two distributional checks to investigate these patterns. These
figures show that, in general, sellers from Red, Orange, and Green zones had similar interactions
with buyers from Red, Orange, and Green zones.

We also consider whether certain products are sourced intensively from firms located in
certain zones. For instance, if all the rubber supply of firms in this production network comes
from suppliers in Red zones, then buyers of rubber would find it increasingly difficult to find
suppliers. Once again, if there is heterogeneity in responses by product category, our estimated
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LATE elasticity would weigh rubber products higher than non-rubber products. While not a source
of bias, it does affect the interpretation of the estimated parameter. In Figures A4g and A4h, we
plot the shares of total purchases of each industry (HS Section) that are sourced from firms in Red,
Orange, and Green zones. Except for the small HS industry 19 (arms and ammunition), there is
no noticeable degree of concentration of suppliers from any particular zone.

Fixed Effects: Finally, in all our implementation of the 2SLS, we incrementally include high-
dimensional fixed effects, and show coefficient stability, just as we do for the OLS. For instance,
we include buyer-by-product-by-time fixed effects that control for any demand shocks, such as
the buyers also being affected by Covid-19 lockdowns. This is important to do, as the Covid-19
shock was far-ranging and may have hypothetically affected demand as well. While we show
balance in the network characteristics by type of zone, we think it is still important to include such
buyer-product-time fixed effects. Like in the OLS, we also include seller-product fixed effects
that control for any seller-product specific time-invariant characteristics. In our most stringent
specification, we include seller-product-time fixed effects, and rely only on variation coming from
the transport costs between the sellers and buyers (i.e., the bilateral IV). This last specification,
while stringent, controls for any seller-by-product specific shocks.

5 ELASTICITY ESTIMATES

In this section, we show the results of the estimation of both firm-level elasticities of substitution
across suppliers within a product category, and then across product categories.

5.1 Firm-level elasticities of substitution across suppliers

First, we report OLS estimates in Table 1. In columns (1)-(3), we progressively include stronger
sets of fixed effects. In column (1), we include both buyer-by-time and product-by-time fixed
effects, as well as the Feenstra term. In column (2), we also include buyer-by-product and seller-by-
product fixed effects. In column (3), we include buyer-by-product-by-time and seller-by-product
fixed effects. Notice that in column (3), the former set of fixed effects absorbs the Feenstra term.
The implied elasticities exhibit values between 0.70 and 0.78 across the different specifications.

To test whether our estimates vary by product aggregation, in columns (4)-(7), the estimates
are based on 6-digit and 8-digit HS codes. The elasticities range between 0.66 and 0.78, so the
estimates do not meaningfully change. Since these elasticities are below 1, these estimates suggest
that, at the firm level, suppliers act as complements rather than substitutes for buyers. This is
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important for aggregate incomes since, as shown in Equation 18 in Section 7, which outlines a
simple production network model à la Baqaee and Farhi (2019), we see that when second-order
effects are considered, an elasticity of substitution less than 1 implies that the aggregate impacts of
negative shocks are amplified.

TABLE 1: OLS, firm-level elasticity of substitution across suppliers

(1) (2) (3) (4) (5) (6) (7)

log
(

p̂
ˆ̃p

)
0.2171 0.2222 0.3045 0.2114 0.3030 0.2441 0.3370

(0.0133) (0.0147) (0.0151) (0.0192) (0.0196) (0.0352) (0.0365)
ε 0.7828 0.7777 0.6954 0.7885 0.6969 0.7558 0.6629
R2 0.417 0.460 0.404 0.478 0.411 0.495 0.420
Obs 2028039 1966591 991187 2021334 816122 993583 341903
HS digits 4 4 4 6 6 8 8
Feenstra term Y Y Y Y
Buyer-time FE Y Y Y Y
Product-time FE Y Y Y Y
Buyer-product FE Y Y Y
Buyer-product-time FE Y Y Y
Seller-product FE Y Y Y Y Y Y

Notes: OLS estimates come from estimating Equation (6). Time is monthly from April 2019 to October 2020. The
first row reports the estimates associated with changes in log relative unit values. Standard errors are two-way clustered
at the origin and destination state level and are reported in parentheses below each estimate. The third row reports the
implied value for ε, which is 1 minus the estimate on the first row. The table contains seven columns: Each corresponds
to different specifications on how we define a product (4-digit, 6-digit, or 8-digit HS codes), which fixed effects are
included, and whether the Feenstra (1994) term is included. These combinations are reported by the last seven rows
of the table. All specifications include the controls mentioned in the paper.

Nevertheless, as we described previously, the OLS estimates may be contaminated by simul-
taneous demand and supply shocks that happened during Covid-19. In Table 2, we report 2SLS
estimates based on our proposed instruments. We find evidence that inputs across different sup-
pliers of a firm within the same 4-digit HS product category are highly complementary, ranging
from 0.50 − 0.66, depending on the set of fixed effects and instruments we use.23 Our preferred
specifications are column (3) and (5) with an elasticity of 0.55, where we use both the seller and
the seller-buyer level instrument, essentially deriving variation from both sellers’ production costs
and transportation costs. We include buyer-by-time and product-by-time fixed effects that account
for time-varying demand shocks and also account for firm entry and exit with the Feenstra (1994)
term. Each specification reports a high Kleibergen-Paap F-statistic, indicating that our instruments
are statistically relevant. In columns (1) and (2), we use the seller-level and seller-buyer-level
instruments separately. The elasticities are 0.50 and 0.61, respectively, which also reflect com-
plementarity. In column (4), we also include buyer-by-product and seller-by-product fixed effects,

23In Table A11, we show similar patterns for HS-6 and HS-8 categories as described in Section 6.
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and the elasticity rises to 0.66. Columns (5)-(6) show that our complementarity results remain after
including stronger sets of fixed effects. Finally, column (7) is our strongest specification that also
includes seller-by-product-by-time fixed effects. This specification absorbs our seller-level instru-
ment, such that only our bilateral instrument prevails. Even under this stringent specification, we
find an elasticity of around 0.64. Therefore, all our estimates provide evidence for ε< 1.

TABLE 2: 2SLS, firm-level elasticity of substitution across suppliers

(1) (2) (3) (4) (5) (6) (7)

log
(

p̂
ˆ̃p

)
0.5042 0.3945 0.4538 0.3409 0.4418 0.3535 0.3572

(0.2129) (0.0933) (0.1389) (0.1068) (0.1982) (0.1701) (0.1435)
ε 0.4957 0.6054 0.5461 0.6590 0.5581 0.6464 0.6428
Obs 2854292 2028039 2028039 1966591 1020362 991187 676923
K-PF 48.232 133.688 143.413 248.977 69.827 62.215 28.37
Seller IV Y Y Y Y Y
Bilateral IV Y Y Y Y Y Y
Feenstra term Y Y Y Y
Buyer-time FE Y Y Y Y
Product-time FE Y Y Y Y
Buyer-product FE Y
Seller-product FE Y Y
Buyer-product-time FE Y Y Y
Seller-product-time FE Y

Notes: 2SLS estimates come from estimating Equation (6). Time is monthly from April 2019 to October 2020. The
set of common suppliers of buyer b is Ω∗

i,b j,t = Ωi,b j,t ∩Ωi,b j,t−1. That is, a supplier s of buyer b is considered common
if they traded in both the current and previous month. The first stage uses either bilateral or seller-level instruments,
as reported in rows six and seven. Bilateral instruments correspond to Equation (11), and seller-level instruments
correspond to Equation (10). The first row reports estimates associated with changes in relative unit values in logs.
Standard errors are two-way clustered at the origin and destination state level and are reported in parentheses below
each estimate. The third row reports the implied value for ε, which is 1 minus the estimate on the first row. The fourth
row reports the number of observations. The fifth row reports the Kleibergen-Paap F statistic from the first stage. A
product is a 4-digit HS code, and the treatment period is March-May 2020. The table contains seven columns. Each
column corresponds to different combinations of instruments, fixed effects, and whether the Feenstra (1994) term is
included. These combinations are reported in the last nine rows. All specifications include the controls mentioned in
the paper.

Importantly, we should note that a low ε does not imply that when the price of a seller’s input
rises, a buyer purchases less from a different seller. Instead, it indicates that the buyer is unable to
replace a sufficient amount of the input from the high-cost supplier with one from the lower-cost
substitute to lower the expenditure share attributed to the high-cost supplier.

2SLS vs OLS. The 2SLS estimates for ε are smaller than the OLS estimates. As discussed in
Section 4.2, the bias is in the expected direction if we expect the Covid-19 shock to also induce
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negative demand shocks, thereby biasing up OLS estimates of ε. We may expect that our estimated
elasticity will be lower for the sub-sample of buyers who did not have more than one supplier to
source inputs from. In Table A5, we restrict our sample to cases when a buyer traded with at least
two sellers in two consecutive periods. Column (5) again yields an elasticity of substitution of
0.56, very close to the estimate from our main specification.

Extensive margin. To account for the extensive margin, we show results from estimating Equa-
tion 8 in Table A6. Again, we find evidence of high levels of complementarity, with the estimated
elasticities ranging from 0.23-0.25 depending on the range of fixed effects used.

Market power, variable prices, and bargaining. Our estimates of the elasticity of substitution
across suppliers is consistent with a model with CES production where the production sector is
perfectly competitive, as outlined in Section 7. We abstract from market power (Dhyne et al.,
2022; Edmond et al., 2023; Alviarez et al., 2023), since our data suggests that the market structure
in this Indian state is highly competitive in general. The median HHI across 4-digit HS product
categories is 0.1041, which implies a low level of market concentration within a product category.

Furthermore, in our data, we see that for a particular product, sellers charge all buyers the
same price (conditional on distance). That is, there is unlikely to be variable pricing or bargaining
that meaningfully drives price variation. Figure A3 shows that regardless of whether the product
is defined at the HS4 or HS8 level, there is little variation in prices across buyers for the same
year-month and seller-product.24 This suggests that buyer-seller specific bargaining power is not
significant in our setting.

However, it is important to note that the estimate of complementarity across suppliers does
not make our analysis inconsistent in economies with some form of market power. They are,
however, not consistent with a simplified model of monopolistic competition where firms set prices
by adding a constant markup to marginal cost based on the elasticity of substitution in demand. It is
because in such a scenario, the marginal revenue would be negative. These models of monopolistic
competition have to assume that the elasticity of substitution across products and/or suppliers is
greater than 1. While useful in many other instances of market power, these models are not suitable
in situations where specific relationships between buyers and sellers make substitution difficult,
such as discussed in Acemoglu and Tahbaz-Salehi (2024).

Indeed, as Acemoglu and Tahbaz-Salehi (2024) show, market power does not necessarily
24We estimate a regression of seller-product-buyer-year-month level prices on distances between buyer and seller

and seller-product-year-month FEs and plot the residuals in Figure A3. For any HS code (HS4/HS6/HS8), these
residuals are tightly distributed across 0, which suggests that sellers are not charging systematically differentiated
prices across buyers for the same product in the same year-month.
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appear in price setting in the form of mark-ups. Instead, all inputs are priced at marginal cost,
but firms earn positive profits in equilibrium via lump-sum transfers from their customers, the
magnitudes of which are determined by pairwise bargaining power. One of the key assumptions in
their paper, in fact, requires inputs to be gross complements or at least weak substitutes.

In many ways, therefore, our estimates of complementarity are consistent with various mod-
els of market power. In Section 7 below, we do present a simplified, parsimonious model without
market power, just to fix ideas and perform counterfactual exercises. Nevertheless, our elasticity
estimates can also be broadly applied in other contexts that involve responses to short-term shocks.

Variation in ε. We do not think that the elasticity is a fixed exogenous parameter that applies
to every buyer. Our framework is intentionally parsimonious, but we recognize that our elasticity
estimates should be thought of as an empirical average over industries, locations, and types of
firms. ε likely depends on various factors, such as the contracting structure and the enforcement
of contracts, the level of inventories by industry, and the types of products produced. In Section 6
below, we show detailed heterogeneity analysis that unpacks mechanisms behind why (on average)
we find low substitutability.

5.2 Firm-level elasticities of substitution across products

In Table 3, we report our estimates for the firm-level elasticity of substitution across products.
In column (1), we show the OLS estimate of ζ = 0.92, which reflects complementarity between
product categories. In columns (2) and (3), we define products more granularly. In this case, the
elasticities are around 0.80, which also reflects complementarity between products.

In columns (4)-(6), we report our estimates of ζ under 2SLS estimation after using a weighted
average of instruments across buyers’ sellers as discussed in Section 4.2. Our specification in
column (4) reports a value of 0.69, reflecting that simultaneous negative demand and supply shocks
during Covid-19 led to an underestimation of ζ under OLS. This elasticity is higher than the 2SLS
elasticity of substitution across suppliers for the same product (ε = 0.55), reflecting a lower degree
of complementarity across products compared to suppliers. This finding is consistent with the
macroeconomics and production networks literature which generally argue that the elasticity of
substitution increases with the level of aggregation (Houthakker, 1955; Bachmann et al., 2024;
Lagos, 2006). The key idea is that substitution may happen at a higher level than the individual
production process or even individual firms (Bachmann et al., 2024). An example from Bachmann
et al. (2024) illustrates how, during World War II, Germany faced a petrol crisis after being cut off
from its main suppliers, leading to the adaptation of up to 500,000 civilian vehicles with wood-
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TABLE 3: Firm-level elasticity of substitution across products

(1) (2) (3) (4) (5) (6)

log
(

p̂
ˆ̃p

)
0.0842 0.2014 0.1996 0.3136 0.1712 0.1996

(0.0039) (0.0045) (0.0048) (0.1060) (0.0040) (0.0048)
ζ 0.9157 0.7985 0.8003 0.6863 0.4368 0.4721
Obs 1292329 794376 766804 1292329 794376 766804
K-PF . . . 27.284 17.950 15.868
R2 0.3155 0.3554 0.3898 . . .
Estimator OLS OLS OLS 2SLS 2SLS 2SLS
HS digits 4 8 8 4 8 8
Product-time FE Y Y Y Y Y Y
Buyer-time FE Y Y Y Y Y Y
Buyer-product FE Y Y

Notes: The estimates come from estimating Equation (4). Time is monthly from April 2019 to October 2020. Price
indices are constructed by recovering the residuals when estimating ε and the estimates of ε. The first three columns are
OLS estimates of ζ. The last three columns are 2SLS of estimates of ζ using weighted averages of both bilateral and
seller-level instruments across sellers. Bilateral instruments correspond to Equation (11), and seller-level instruments
correspond to Equation (10). Each column corresponds to a different combination of fixed effects and HS codes.
Columns (1)-(2) and (4)-(5) correspond to our preferred specification when estimating ε for 4-digit and 8-digit HS
codes. Additionally, in columns (3) and (6), we also include buyer-by-product fixed effects. The first row reports
the estimates associated with changes in log relative unit values. Standard errors are clustered at the buyer’s district
level and are reported in parentheses below each estimate. The third row reports the implied value for ζ, which is
1 minus the estimate on the first row. The fourth row reports the number of observations. The fifth row reports the
Kleibergen-Paap F statistic from the first stage for the 2SLS estimators. The sixth row reports the R2 for the OLS
estimators. The seventh row denotes whether the estimates are obtained through OLS or 2SLS. The eigth row reports
the HS code. The last three rows indicate the combination of fixed effects.

burning devices.25

In columns (5) and (6), similar values for this elasticity hold when we define a product as
an 8-digit HS code, and after the inclusion of buyer-by-product fixed effects. Finally, first-stage
F-stats are high, which reflects the statistical relevance of our weighted averaged instruments.

Unlike the elasticity of substitution across suppliers within a product category, there have
been previous attempts in the literature to estimate the elasticity of substitution across products
or industries. In particular, other work has estimated a wide range of values for parameters akin
to ζ depending on the aggregation of the industry and the research question. Our elasticity is
close to Boehm et al. (2019), who estimate an elasticity across HS-10 products that lies between
0.42 − 0.62 for non-Japanese affiliates and 0.20 for Japanese affiliates. Atalay (2017) finds an
estimate of around 0.10 for 30 aggregated industries using US data.

25See Bachmann et al. (2024) for a long list of such examples where substitution is possible at a more aggregate
level (across products) but not necessarily across suppliers within a particular product.
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6 WHY ARE SUPPLIERS COMPLEMENTARY IN THE

SHORT-RUN?

Our estimates indicate that a buyer’s expenditure share for a given supplier rises with the input
price of that same supplier in the short run. This suggests that buyers cannot easily substitute away
from the input supplied by this specific supplier. Note that this does not necessarily mean that
when the price of a seller’s input rises, a buyer purchases less from a different seller. Instead, it
indicates that the buyer is unable to replace a sufficient amount of the input from the high-cost
supplier with one from the lower-cost substitute to lower the expenditure share attributed to the
high-cost supplier.

The inability of the firm to substitute suppliers in the short run goes in line with other studies
arguing that it is hard for firms to substitute across different products in the short-run (Boehm
et al., 2019; Barrot and Sauvagnat, 2018). We show that this inability to substitute exists even
when we consider individual suppliers of the same product. In this section, we explore different
possibilities that can explain this complementarity result. In the process of unpacking mechanisms,
we document relevant heterogeneity in the elasticity estimates. The first aspect of heterogeneity
we examine is whether our elasticity estimates vary with the magnitude of the price shock, thereby
testing the validity of the CES assumption in our setting.

Validity of the CES assumption. We estimated constant elasticities of substitution across sup-
pliers within the same HS code. We now investigate whether our elasticities vary by the size of
the price change (i.e., size of the shock). As we show in Figure 2, the price changes are higher for
more severe lockdowns. If the magnitude of the elasticity is correlated with larger price changes, it
may violate the CES assumption. To test for this potential concern, in Equation (12) we estimate a
modified version of Equation (6), where we allow for the elasticity εv to vary across the lockdown
zone v of the seller:

log

(
P̂Ms,i,b j,t

P̂Mi,b j,t

)
= ωb j,t +ωi,t +ωb j,i +ωs,i + (1 − εv) log

(
p̂s,i,b j,t̂̃pi,b j,t

)
+ log

(
λ̂i,b j,t

̂̃s∗i,b j,t

)
+ Xδ + ξs,i,b j,t ,

(12)
where εv is the elasticity of substitution across sellers within the same product in lockdown zone
v = {Orange,Red}, with respect to sellers in Green lockdown zones. We report the results in the
first two columns of Table A7. For sellers in districts with severe lockdowns, we find an elasticity
of 0.53. Whereas, for sellers in mid-sized lockdowns (orange zones) we estimate an elasticity
of 0.69. A t-test between the two estimates cannot reject that these two estimates are the same.
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As such, there is insufficient evidence to conclude that the elasticity of substitution across sellers
within the same product varies with the size of the price change.

Institutional Quality and Input Specificity. Our complementarity result may arise if inputs
are often sourced from specific suppliers and customized, rather than bought “off-the-shelf".26

Relatedly, specialized inputs have a greater need for contract enforcement in trade, and so rely on
stronger court institutions.

We test these two hypotheses. First, we study whether intermediate inputs that are differ-
entiated (i.e., relationship-specific) display higher complementarity. To test this hypothesis, we
estimate our firm-level elasticities of substitution across suppliers conditional on whether the seller
offers an intermediate input classified as either “Differentiated" or “Homogeneous" according to
Rauch (1999).

Second, we study whether intermediate inputs that require highly-specified contracts and,
therefore, are likely to be traded in locations with better institutional quality display higher com-
plementarity (Boehm, 2022; Boehm and Oberfield, 2020). To test this hypothesis, we use the
geographic variation in institutional quality across Indian districts. We classify districts into ter-
ciles (Low, Medium, and High) according to the average time it takes for courts in each Indian
district until a first hearing from the DevData Lab database, and we estimate our firm-level elas-
ticities of substitution across suppliers conditional on whether buyers are located in each of these
terciles of institutional quality.

In the last five columns of Table A7, we report 2SLS estimates of our elasticity by input
specificity and institutional quality. In the first two columns, we focus on input specificity. As
expected, we find an elasticity of substitution across suppliers for differentiated inputs of 0.62,
and for homogeneous inputs of 1.07. The higher degree of complementarity of input suppliers
for differentiated goods, in comparison to homogeneous goods, reflects the importance of cus-
tomized products that typically require durable relationships between buyers and sellers. Instead,
for homogeneous inputs, the elasticity of substitution is greater than 1.

The last three columns focus on institutional quality. We find an elasticity of substitution
across suppliers located in low-quality districts of 0.80, which is higher than the elasticity for
suppliers located in high-quality districts of 0.37. The elasticity of substitution across suppliers
located in medium-quality districts is 0.58, which is just in between the previous two estimates.
This positive relationship between the degree of complementarity and the quality of institutions
reflects the fact that places with better contract enforcement facilitate trade with more specialized

26For instance, in Elliott and Golub (2022), firms need specific knowledge about input requirements and capabilities
from their trading partners and therefore need an ongoing relationship to overcome moral hazard problems.
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inputs that are harder to substitute.

Industry-Specific Elasticities. An alternative way to test for the role of input-specificity for our
complementarity result is to check whether firms that source highly specific intermediate inputs
(e.g., processed foods or art) should report a lower elasticity of substitution across suppliers than
firms that source from more general inputs (e.g., textiles or jewelry). We analyze whether the
degree of substitution across suppliers varies by industry (HS section). In Table A8 and Figure
A5, we show the estimates of this elasticity of substitution across suppliers by twenty-one broad
industries. We find that the OLS elasticity of substitution across suppliers by industry lies in
the range of 0.41 − 0.87. Once we instrument for the unit values with the Covid-induced lockdown
variation, we find that there is wider heterogeneity across industries. These reflect industry-specific
ease of finding alternatives. For instance, Art yields the lowest elasticity of 0.149, perhaps as it
reflects seller-specific products, whereas Jewelry yields the highest elasticity of 1.372, perhaps as
gold and silver are not particularly seller-specific.

Longer-run elasticities of substitution across suppliers. Our estimates and identification strat-
egy are only applicable in the short run since the lockdowns only lasted for three months. But the
elasticity of substitution is necessarily tied to the time horizon (Ruhl et al., 2008; Peter and Ruane,
2022). We estimate a short-run elasticity (monthly), so we allow firms a month to adjust expen-
ditures in response to price shocks. A potential avenue of exploration is to understand how this
elasticity changes with the frequency of the measurement. To do this, we estimate our elasticities
after aggregating the data at the quarterly level, so we allow firms a quarter to adjust expenditures
in response to price shocks.

In Table A9, we report OLS and 2SLS estimates of the firm-level elasticity of substitution
across suppliers at both frequencies. The first two columns show our baseline estimates of ε at a
monthly frequency. They correspond to column 1 from Table 1 and column 3 from Table 2. The
last two columns show the estimates of ε at a quarterly frequency. As expected, the estimates at
quarterly frequency are slightly higher than the monthly frequency ones: the OLS estimates go up
from 0.78 to 0.86, and the 2SLS estimates go up from 0.55 to 0.79. Our quarterly estimates still
exhibit complementarity in production since they are below 1.

Indeed, this analysis suggests that while longer-run elasticities may suggest a relatively
higher degree of substitutability, the elasticities still continue to display complementarity. This is
despite us continuing to consistently control for changes in demand (with buyer-product-time fixed
effects). It is, of course, possible that much longer time horizons will generate larger elasticities.
Yet, we should think of our estimates as being relevant for responses to short-term shocks, such as
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pandemic-induced lockdowns, weather and climate shocks, wars, disasters, supply-chain disrup-
tions, and unexpected policies. These would be in contrast to a permanent (or long-term) one-time
shock to the network. For instance, in short-lived shocks, firms may attempt to ‘weather the storm’
and hold on to its suppliers (Castro-Vincenzi et al., 2024). A large literature has documented that
there are fixed costs of forming new relationships which could deter firms from changing suppliers
in the face of adverse shocks (Acemoglu and Tahbaz-Salehi, 2024; Dhyne et al., 2023).

Inventories. Inventories of intermediate inputs allow firms to absorb unforeseen shocks to input
deliveries without an impact on production (Boehm et al., 2019). Do firms in industries that typi-
cally hold higher inventories have an easier time substituting across inputs from different suppliers?
To test this hypothesis, we estimate the elasticity of substitution between suppliers conditional on
sellers or buyers belonging to industries of “Low" or “High" inventory.

In Table A10, we show the results disaggregated by four types of industries: Industries where
sellers typically hold high and low inventories (above or below median inventory-level across all
industries) and industries where buyers typically hold high and low inventories. We find that,
indeed, when buyers are in industries with high levels of inventory, inputs across suppliers of the
same product are much less complementary (column 4). This is because the buyer can temporarily
substitute a costly input from a seller with its input inventory holdings. From column (2), we
find that the level of inventory of a seller’s industry matters much less: Inputs remain highly
complementary and close to our baseline estimate of 0.55 irrespective of the inventory level of the
seller’s industry.

Elasticities by Product Aggregation. To examine differences across product aggregations that
reflect different notions of a product, we re-estimate our main specification in Table A11 using HS-
6 and HS-8 as product definitions. In columns (1) and (3), we replicate our main specifications,
with elasticities of 0.43 (for HS-6) and 0.06 (for HS-8), respectively. These numbers reflect higher
degrees of complementarity when we consider a more granular notion of product. This evidence
is again consistent with the macro and production networks literature which generally argue that
the elasticity of substitution increases with the level of aggregation (Houthakker, 1955; Bachmann
et al., 2024; Lagos, 2006), as discussed in Section 5.2. Finer product classifications (e.g., HS-8)
may also imply that there are fewer suppliers one may be able to source from, and so we may
expect a lower elasticity of substitution between suppliers. Overall, these patterns suggest that
inputs are highly specific for buying firms.

To summarize, our analysis of mechanisms highlights a few important reasons why the elas-
ticity of substitution are so low. First, low institutional quality and high preference for relational
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contracts make it costly for firms to establish new supplier contracts. This is consistent with other
work in this context (Aekka and Khanna, 2024; Fujiy et al., 2022). Second, we are estimating
a short-run elasticity. While this is the relevant elasticity for large shocks (such as pandemic-
induced lockdowns, weather shocks, conflict, disasters, and supply-chain disruptions), they likely
reflect firms having a strategy to wait, and weather out the storm. Third, and related, inventory
management allows firms to not switch suppliers: we find that industries where firms have higher
inventory have lower elasticities of substitution.

7 QUANTIFICATION IN A STANDARD NETWORK MODEL

In what follows, we outline a simple quantitative general equilibrium model of firm-to-firm trade
(Baqaee and Farhi, 2019) to serve as an illustration of the influence of the elasticity of substitution
across suppliers for shock propagation through firm networks. Our model is intentionally parsi-
monious, and only modifies standard frameworks by including the possibility that suppliers of the
same product are not perfect substitutes. This simplicity allows our estimates to be used in other
contexts.27 The production sector is perfectly competitive.28 We adapt the general nested CES
structure to reflect the possibility that suppliers within the same product category could be sub-
stitutes or complements. Firms combine inputs in a CES fashion in each of its three tiers. In the
first tier, firms combine labor and aggregated intermediate inputs to produce output. In the second
tier, firms combine aggregated intermediate inputs of a product category. In the third tier, firms
combine suppliers within a product category. The model yields estimating equations we then use
to estimate the firm-level elasticity of substitution between suppliers of the same product category.

We consider a fixed set of firms F and of product categories I, where N = |F| is the total
number of firms in the economy, Ni is the number of firms producing a good of product category i,
and I = |I| is the number of product categories. Each firm produces according to its technology

yn j = An

(
wnl (ln)

α−1
α + (1 − wnl)

(
xn j
)α−1

α

) α
α−1

, (13)

where yn j is the output produced by firm n in product j, An is the productivity of firm n, ln is the
labor used by firm n, xn j is the composite intermediate input used by firm n in product category
j, α is the elasticity of substitution between labor and the composite material input, and wnl is the

27However, this parsimony implies that the elasticity of substitution across suppliers should not be viewed as a fixed
exogenous parameter but rather as one that depends on various factors, including market structure, institutional quality,
firm types, and inventories. We empirically document this heterogeneity but focus primarily on the average value of
the parameter throughout much of the analysis.

28Paragraph “Market power, variable prices, and bargaining" in Section 5.1 contains a discussion of this assumption.
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intensity of labor in production. The composite material input, in turn, consists of inputs from the
I different product categories in the economy and is:

xn j =

(
I∑

i=1

w
1
ζ

i,n j

(
xi,n j
) ζ−1

ζ

) ζ
ζ−1

, (14)

where ζ is the firm-level elasticity of substitution across products i,29 and wi,n j is the importance
of inputs of product category i for firm n of product j. xi,n j are intermediate inputs from product i

going to firm n producing product j, which are constructed as:30

xi,n j =

(
Ni∑

m=1

µ
1
ε
m,i,n jx

ε−1
ε

m,i,n j

) ε
ε−1

, (15)

where xm,i,n j are intermediate inputs from supplier m of product i sold to firm n producing product
j. µm,i,n j is the unobserved importance of input from supplier m of product i in the production of
firm n of product j, and ε is the firm-level elasticity of substitution across different suppliers within
the same product category. This is the key elasticity we have estimated. The above production
functions work for reproducible factors. For non-reproducible factors (in our case, labor), the
production function is an endowment: Yf = 1.

Product 0 represents the final consumption of the household and is given by

C =

(
N∑
i

w0i (ci)
σ−1
σ

) σ
σ−1

, (16)

where
∑

i woi = 1 and σ is the elasticity of substitution in consumption.

7.1 Model in standard form.

To write the economy in standard form as in Baqaee and Farhi (2020), we construct an input-output
matrix Ω̂ with dimension 2 + N + I, where 2 dimensions come from the household’s consumption
aggregator, and a factor of production (labor), N dimensions come from the N firms in the economy,
and I dimensions come from the I product categories in the economy. We explicitly distinguish
between labor and intermediate inputs since labor is non-reproducible.

29Previous work has estimated different related versions of this elasticity; e.g., elasticities of substitution across
industries (Atalay, 2017), across goods from different countries (Boehm et al., 2019), or across product categories
(Carvalho et al., 2021; Peter and Ruane, 2022).

30We exclude foreign intermediate goods since they are not exposed to Indian Covid-19 lockdown shocks.
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Consider the vector of elasticities by θ̂, where θ̂ = (σ,α,ζ,ε). Formally, a nested-CES
economy in standard form is defined by the tuple (Ω̂, θ̂). The input-output matrix Ω̂ of size
(2 + N + I)× (2 + N + I) is a matrix where element (i, j) equals the value of Ωi j = p jxi j

piyi
, which is

the expenditure share of the ith firm on inputs from the jth supplier as a share of the total revenue
of firm i. Note that every supplier is a CES aggregate. The Leontief inverse is ψ = (1 −Ω)−1. Intu-
itively, the (i, j)th element of ψ (the Leontief inverse) measures i′s total reliance on j as a supplier.
That is, it captures both the direct and indirect ways i uses j in its production. Let us also denote
the sales of producer i as a fraction of GDP by λi, where λi = piyi∑N

j p jc j
.

The input-output covariance operator is

CovΩk(ψ(i),ψ( j)) =
2+N+I∑

l=1

Ωklψliψl j −

(
2+N+I∑

l=1

Ωklψli

)(
2+N+I∑

l=1

Ωklψl j

)
. (17)

This operator measures the covariance between the ith and the jth columns of the Leontief
inverse using the kth row of the input-output matrix as distribution. The second-order macroeco-
nomic impact of microeconomic shocks in this economy is given by:

d2logY
dlogA jdlogAi

=
dλi

dlogA j
=
∑

k

(θk − 1)λkCovΩ(k)(Ψ(i),Ψ( j)). (18)

For a detailed derivation of Equation (18), see the appendix of Baqaee and Farhi (2019).
To inspect how firm-level shocks can propagate through supply chains, consider the following
example. Firm j, which is located in a Red zone, suffers a negative productivity shock, given by
d logA j < 0. The second order term captures the reallocation effect: In response to a negative shock
to product category j, all products k downstream of j may readjust their demand for all other inputs.
Crucially, the impact of such readjustments by any given k on the output of product i depends on
the size of product k as captured by its Domar weight λk, the elasticity of substitution θk in k′s

production function, and the extent to which the supply chains that connect i and j to k coincide
with one another, as given by the covariance term. Importantly, i and j in Equation 18 could be
firms, and in that case, these shock propagation equations determine how shocks to individual firms
( j) can propagate through the entire network depending on the sizes of the downstream sector (k)
that j supplies inputs to, the number of input suppliers to the affected downstream sector k, and
how these suppliers’ supply chains overlap with j’s supply chain.
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7.2 Quantification and counterfactuals

In this section, we use both data from our production network and our newly estimated elasticities
to quantify the role of these elasticities in the propagation of shocks. To do this, we need to
write down the Leontief matrix in standard form. Given the production structure of our economy,
we need four submatrices: (i) firm purchases of 4-digit HS products, (ii) firm sales of 4-digit
HS products, (iii) labor employed by each firm, and (iv) final sales by each firm. The first two
submatrices are directly constructed from the firm-to-firm trade data from the pre-Covid-19 period
of March 2019 to February 2020. Labor employed and final sales by firms are obtained by merging
in firm-level data from IndiaMART31, which contains information on firm-level employment and
final sales. For more details on this, see Appendix C.

The economy is comprised of N = 93,260 firms, I = 1,293 different HS-4 products, labor,
and a composite final good. The average firm buys 10 distinct products as a buyer and sells 5
distinct products as a seller. The most connected buyer and seller buys and sells over 500 distinct
products. We use this 94,555×94,555 input-output matrix to understand how complementarities
at the firm level affect the propagation of shocks through production networks.

While recent work also quantifies the effect of firm-level shocks on aggregate GDP up to the
second order, they mostly rely on changes in firm-level final sales rather than the full production
network. Instead, we identify the most connected firms, deriving the Leontief inverse from the en-
tire production network. Without relying on any approximation, we use the full network to quantify
the importance of firm connectivity separately from firm size. This exponentially increases com-
putational complexity from the order of (N + I + 2) to (N + I + 2)2. As such, we use computational
innovations in big data to implement this procedure. For more details on the derivation of the shock
propagation equation and its numerical implementation, see Appendix E.

Note that our quantification exercises in this section are conditional on the products that firms
buy or sell being given at the extensive margin, even though a firm can change its set of buyers
or suppliers (Baqaee et al., 2023; Khanna et al., 2022). We, therefore, need to empirically assess
whether the set of HS-4 products a buyer buys and the set of HS-4 products that a seller sells
changes between the pre and post-Covid-19 period. We do this by inspecting whether both sellers
and buyers of each product continued to trade in their corresponding product categories after the
Covid-19 lockdowns. In Figure A6, we show the product-level distribution of the share of sellers
that sold and buyers that purchased goods of that product during both periods t and t −1, where t is
a 6-month window before and after the lockdowns. In the figure, we see that, for both sellers and
buyers, these two distributions are very similar to each other. The overall stability in Figure A6

31See IndiaMART (link).
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shows that the assumption that the products that firms buy or sell do not change is tenable when
analyzing the impact of negative productivity shocks.

7.2.1. How important is the firm-level elasticity of substitution across suppliers?

We assess the importance of the estimated firm-level elasticity of substitution across suppliers for
the same product by studying how this elasticity determines the impacts of negative firm-level
productivity shocks on aggregate GDP. In this counterfactual, we shock the productivity of firms
located in Red zones by 25%. We find that this productivity shock reduces GDP by 10.95%. As an
empirical benchmark, the state’s annual GDP fell by 11.3% in 2020/21. This fall would be 2.68pp

less in a model where firms in the same HS-4 product are considered substitutes (ε = 2) and 0.99pp

more when firms in the same HS-4 product are considered almost Leontief (ε = 0.001). Given the
quarterly GDP of this state in 2020-2021, the additional losses due to firm-level complementarities
translate into 870 million USD, which is about 25 USD per capita per quarter, compared to the
case when firms are substitutes.32

Note that the differences in GDP that arise from changing the values of firm-level elasticities
of substitution across suppliers only change the second-order effects on GDP, not the first-order.
Then, how important are these second-order effects that we have estimated? In Figure 5, we
simulate different levels of negative productivity shocks for four different values of the elasticity
ε and plot the second-order percentage point change in GDP due to these shocks. The blue and
red lines show these differences for high levels of complementarity between suppliers: 0.001 and
our estimated elasticity 0.55, respectively. The green and yellow lines show the additional second-
order change in GDP for high levels of substitution across suppliers: 1.75 and 1.25, respectively.

These plots provide two main lessons. First, for a given negative productivity shock, the
second-order effects intensify with the degree of complementarity between suppliers. Second,
given the same value of ε, the second-order effects intensify with the magnitude of the productivity
shocks. Finally, as suppliers exhibit higher substitutability, the second-order effects dampen the
negative first-order effects, and more so, for higher values of productivity shocks. When suppliers
instead exhibit complementarity, the second-order effects magnify the negative first-order effects.
That is, unlike the first-order effects, which only depend on firm size, complementarities at the
firm level non-linearly amplify the effects of negative productivity shocks. This reflects similar
amplification patterns that (Baqaee and Farhi, 2019) document, but at the industry level. These
graphs illustrate the importance of second-order effects largely driven by firm complementarities,

32To put these numbers into perspective, Baqaee and Farhi (2019) showed that complementarities at the industry
level, with an elasticity of substitution 0.001, amplify the effect of a negative 13% shock in the oil industry on GDP
by around 0.61%.
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especially for large, short-lived, negative productivity shocks such as Covid-19.

FIGURE 5: How important are second-order effects?

Notes: The horizontal axis is the percentage change in productivity for firms in Red districts. The vertical axis is the
second-order change in GDP in percentage points for different values of the firm-level elasticity of substitution across
suppliers (ε). Different values of the elasticity (ε = 0.001, ε = 0.55, ε = 1.25, and 1.75) are plotted with different colors.

7.2.2. How important is a firm’s connectivity in its network?

Since Hulten (1978), policy-makers and researchers have emphasized the importance of firm sizes
in the propagation of shocks. Now, we investigate the importance of firm connectedness, given
fixed firm sizes, in the propagation of shocks. We conduct these counterfactuals for different
values of elasticities of substitution when suppliers are complementary, as our empirical analysis
points to strong complementarities between suppliers.

In this counterfactual, we explore the importance of a firm’s connectivity in its network. We
measure firm connectivity by its value within the Leontief inverse matrix, which measures firms’
direct and indirect connections to other firms.33 Firm size is measured by its Domar weight.

Since firm sizes and connectivity are highly correlated with a correlation coefficient of 0.75,
we vary the firms’ connectivity for a given level of firm size to tease out the pure effect of connec-
tivity. To implement this, we choose firms with Domar weights equal in size for up to 5 decimal

33The (i, j)th entry of the Leontief is a measure of firm i’s total reliance on j as a supplier. Summing across all i’s
yields a measure of the connectivity of each supplier j or its importance in the firm network in terms of connectivity.
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FIGURE 6: Second order GDP effects when firms with the same size but different connectivity are affected

(a) ε = 0.001 (b) ε = 0.55

(c) ε = 0.98

Notes: The figure comprises three panels. In each panel, the horizontal axis is the percentage change in productivity
for firms in our state, and the vertical axis is the second-order change in GDP, in percentage points for different values
of firm-level elasticity of substitution across suppliers (ε). Each panel corresponds to different values of the firm-level
elasticity of substitution across suppliers (ε). Each panel contains three scenarios. The first scenario is the blue line,
where the most connected firms are shocked. The second scenario is the green line, where random firms are shocked.
The third scenario is the red line, where the least connected firms are shocked.

places. The first set consists of the most connected firms, the second set is a random draw of firms,
and the third set consists of the least connected firms. Since firm sizes are given, the first-order
effects are the same irrespective of how connected the firms are.34

In Figure 6, we only plot the second-order effects on GDP under these three experiments. In
the first scenario, only the most connected firms are affected by negative productivity shocks (blue
line). In the second, a random draw of firms is affected (green). Finally, in the third scenario, only

34This is the only counterfactual where we draw firms from the entire state rather than only firms located in Red
zones to maximize the number of firms that vary in connectivity for a given firm size.
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the least connected firms are affected (red). We perform these experiments under three different
elasticities of substitution: an elasticity of substitution amounting to near perfect complementarity
(ε = 0.001) in the left panel, our estimated complementarity (ε = 0.55) in the right panel, and near
Cobb-Douglas (ε = 0.98) in the bottom panel. All these experiments are conditional on given firm
sizes; that is, we vary the connectivity of firms after matching on firm sizes.

These counterfactuals show that the fall in GDP is much larger if the most connected firms are
affected compared to the least connected firms or a random set of firms for a given firm size (Domar
weight).35 The importance of the most connected firms increases non-linearly with the negative
productivity shocks: as the shock gets larger, it becomes increasingly important to give attention
to the most connected firms. Our experiment suggests that for our baseline value of elasticity of
substitution (ε = 0.55) and a negative productivity shock of 45%, if the better-connected firms are
allowed to operate, given the same firm sizes, compared to randomly targeting firms, the fall in
GDP would be 0.20pp less, and 0.31pp less compared to targeting the least connected firms.

We notice three patterns: First, in the near Cobb-Douglas case (ε = 0.98), the differences
in GDP when allowing the least or the most connected firms to operate are negligible because
the second-order effects are negligible. Second, as the level of productivity shock increases, it
becomes more important to save the most connected firms. While for a low productivity shock
of 5%, the differences in GDP are negligible (0.001pp and 0.002pp), for a productivity shock
of 25%, these differences are 0.05pp and 0.07pp compared to saving randomly connected and
the least connected firms. Third, the effects of these non-linearities are more pronounced when
suppliers are highly complementary. For near-perfect complementarity (ε = 0.001) and a high
negative productivity shock (−45%), the gains from saving the most connected firms in an economy
compared to saving randomly targeted and least connected firms are 0.38pp and 0.60pp, which is
almost double the gains if instead suppliers were moderately complementary (ε = 0.55).

7.2.3. How important is measuring a firm’s total (direct plus indirect) connectivity?

Existing work has shown that shocks to a firm’s suppliers affect the buyer firm and its suppliers
(Barrot and Sauvagnat, 2018). But shocks to a firm can affect not just its direct but also other
indirect connections (Carvalho et al., 2021). In this counterfactual, we quantify how important it
is to take into account a firm’s indirect connectivity in understanding how firm-level shocks affect
aggregate GDP. To be precise, a firm’s indirect connections measure not only the number of direct

35Relatedly, Liu and Tsyvinski (2020) show that negative shocks to upstream sectors can have more adverse effects
on GDP despite having identical Domar weights. While our effects materialize from the second-order propagation
through a roundabout production network with firm complementarity, the results in Liu and Tsyvinski (2020) stem
from adjustment costs in a vertical production network.
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buyers of a supplier but also the buyers’ buyers and their buyers and so on.36

FIGURE 7: How important is a firm’s connectivity in its network?

Notes: The horizontal axis is the percentage change in productivity for firms in Red districts. The vertical axis is the
second-order change in GDP in percentage points for ε = 0.55. The blue line corresponds to the baseline case when
all firms in the Red districts are affected. The red line corresponds to the case when the government only bails out the
10% most directly connected firms. The green line corresponds to the case when the government bails out the 10%
firms with the most (direct+indirect) total connections.

We conduct two experiments. In the first, the most directly connected 10% firms in Red

zones are allowed to operate, where direct connectivity is measured by the number of buyers a
supplier directly supplies (red line in Figure 7). In the second, the most connected 10% firms in
Red zones are allowed to operate, where the total connectivity of a firm is measured by all its direct
and indirect connections (green line in Figure 7). Note that, unlike the previous counterfactual, we
do not fix firm sizes. We are interested in understanding if the most directly connected firms are
allowed to operate as opposed to the most connected firms, irrespective of size, and how that would
affect aggregate GDP. We report the total effect on GDP under these two sets of experiments and
the baseline results (shock to all firms in Red zones).

We find that, under our estimated elasticity of ε = 0.55 and a negative productivity shock
of 25%, the fall in GDP would be 2.56pp less if firms were allowed to operate based on total
connectivity as opposed to direct connectivity. We see that as the level of the negative productivity
shock increases, the difference in aggregate GDP between these two sets of experiments rises,
emphasizing the importance of measuring a firm’s indirect connections as well.

36As a reminder, we measure the total connectivity of a firm by its value within the Leontief inverse matrix, which
measures firms’ direct and indirect connections to other firms.
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8 CONCLUSION

In this paper, we use highly disaggregated firm-to-firm transaction-level data from a large Indian
state and provide one of the first estimates of firm-level elasticities of substitution across suppli-
ers within the same product category. We provide new estimation strategies and estimates for
these elasticities by leveraging regional variation in supply-side shocks induced by the Indian gov-
ernment’s massive lockdown policy. Leveraging instrumental variables derived from lockdown
policies and incorporating high-dimensional fixed effects, we estimate a novel elasticity that adds
to the existing literature.

We find that in the short-run, suppliers of inputs are highly complementary even at this very
granular level. This suggests that buyers are unable to replace a sufficient amount of the input from
high-cost suppliers with inputs from lower-cost substitutes to lower their overall expenditure share
attributed to the high-cost supplier.

We argue that this elasticity is an empirical average of elasticities of substitution that vary
across types of firms, locations, and industries. We explore explanations behind this low elasticity,
showing that contract specificity of inputs, the level of inventory of the buyer’s industry, and the
time horizon matter. Low institutional quality and high preference for relational contracts make it
costly for firms to switch suppliers, and reflect a lower elasticity of substitution. Furthermore, as we
are estimating a short-run elasticity, relevant elasticity for large shocks (such as pandemic-induced
lockdowns, weather shocks, conflict, disasters, and supply-chain disruptions), the elasticity likely
reflects firms’ strategy of waiting out the shock. Third, and related, inventory management allows
firms to not switch suppliers.

Our elasticity crucially determines aggregate impacts and the transmission of shocks across
the network but is especially difficult to pin down (Baqaee and Farhi, 2019). The combined advan-
tage of having product-level unit values and quasi-experimental variation in supply-side shocks
allows us to overcome previous challenges in the literature, and credibly estimate this elasticity
across suppliers of a particular product.

Since inputs are complementary, adverse shocks to even a small subset of firms that are
highly linked in the supply chain can negatively affect the aggregate economy by propagating
through firm networks. When we conservatively shock only the productivity of firms located in
Red zones by 25%, we find that if suppliers of the same product were substitutes instead of comple-
ments, the fall in aggregate quarterly GDP in the state under study would be about 870 million USD
lower, or about 25 USD per capita lower per quarter. Using big data computational techniques, we
quantify this decline directly using information on the economy-wide firm-to-firm network with-
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out relying on first-order approximations. Our methods thus provide new techniques to quantify
shocks through large and complex production networks. Using data on the entire production net-
work in the state, we measure the full connectivity of firms in the network and show that as the
level of complementarity and the magnitude of the negative productivity shock increase, it is more
effective to save the more connected firms, after controlling for firm size.

Our findings have implications for policymakers worldwide, who often face difficult trade-
offs in crisis regarding which firms to bail out. We highlight the importance of a firm’s overall
connectivity (including second and third-degree connections) by isolating the role of nodal firms in
propagating shocks through production networks. Simply relying on firm size or first-degree con-
nections is unlikely to produce the highest return targets for government aid. Given the underlying
variation used, our estimates are relevant for other crises that are expected to remain short-lived,
such as natural disasters, temporary trade wars and sanctions, and supply-chain disruptions.
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Appendix for online publication only

A APPENDIX TABLES

TABLE A1: Summary statistics

Panel A: 2019

Jan-March April-June July-September

Number of sellers 135,849 131,996 133,897
Number of buyers 193,660 188,708 189,219
Total sales (mln. rupees) 962,688 908,361 1,036,831
Number of transactions 7,772,883 7,808,325 7,934,706

Panel B: 2020

Jan-March April-June July-September

Number of sellers 113,121 69,171 86,696
Number of buyers 164,153 114,353 135,056
Total sales (mln. rupees) 811,755 369,645 775,478
Number of transactions 7,362,508 3,201,081 4,782,336

Notes: This table consists of two panels. Panel A contains information about the number of sellers, buyers, trans-
actions, and total sales for the periods January-March, April-June, July-September for the year 2019. Panel B is the
same as Panel A, but for 2020.
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TABLE A2: Indegree summary statistics

# suppliers per industry-by-buyer-by-time Mean St. Dev. P1 P50 P99

4-digit HS 6.134 16.719 1 2 60
4-digit HS, monthly 1.432 1.662 1 1 7
4-digit HS, quarterly 1.574 2.122 1 1 9
6-digit HS 5.168 12.733 1 2 45
6-digit HS, monthly 1.300 1.275 1 1 6
6-digit HS, quarterly 1.399 1.652 1 1 7
8-digit HS 5.078 10.331 1 2 40
8-digit HS, monthly 1.207 .958 1 1 4
8-digit HS, quarterly 1.266 1.073 1 1 5

Notes: This table reports number of observations, mean, standard deviation, and percentiles 1/50/99 for the number
of suppliers per product-by-buyer-by-time. Each row reports these statistics by different definitions of a product (4, 6,
and 8 digit HS codes) and by time frequency (atemporal, monthly, and quarterly).

TABLE A3: Outdegree summary statistics

# buyers per seller-by-time Mean St. Dev. P1 P50 P99

4-digit HS 64.182 532.814 1 5 985
4-digit HS, monthly 9.211 44.908 1 2 124
4-digit HS, quarterly 12.035 63.022 1 2 169
6-digit HS 69.082 598.099 1 6 1047
6-digit HS, monthly 9.904 50.472 1 2 134
6-digit HS, quarterly 13.041 71.208 1 2 185
8-digit HS 73.293 768.552 1 5 1120
8-digit HS, monthly 11.097 66.348 1 2 151
8-digit HS, quarterly 13.893 86.029 1 2 199

Notes: This table reports number of observations, mean, standard deviation, and percentiles 1/50/99 for the number
of buyers per seller-by-time. Each row reports these statistics by different definitions of a product (4, 6, and 8 digit HS
codes) and by time frequency (atemporal, monthly, and quarterly).
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TABLE A4: Distribution of economic activity by industry and type of transaction

HS section Sales share Purchase share
Animals 1.5034 0.7723
Vegetables 15.2982 11.2945
Fats 2.2934 2.6251
Processed foods 4.2172 5.5548
Minerals 13.1241 10.2353
Chemicals 9.8288 9.0791
Plastics 13.1516 9.1410
Leather 0.1618 0.1677
Wood 2.5110 1.2130
Wood derivatives 1.0783 1.3598
Textiles 3.6342 6.4576
Clothing 1.3428 0.9107
Handicrafts 1.0190 1.9337
Jewelry 1.7005 1.4980
Metal 10.4473 12.1969
Machinery 10.9909 13.5771
Transport equipment 4.7124 8.4147
Surgical instrum. 1.4478 1.6478
Arms and ammo 0.0057 0.0095
Miscellaneous 1.2263 1.4936
Art 0.3043 0.4166

Type of transaction
Within-state 72.6822 52.2224
Inter-state 23.2183 44.5151
Foreign 4.0994 3.2623

Notes: The table consists of an upper panel and a lower panel. In the upper panel, we show the share of sales to and
purchases from our Indian state of analysis by industry (HS Section). In the lower panel, we show the share of sales
to and purchases from our Indian state, by whether the buyer or seller is within the state, in another state of India, or
abroad. Statistics were calculated using data for 2019.
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TABLE A5: 2SLS, firm-level elasticity of substitution across (at least two) suppliers

(1) (2) (3) (4) (5) (6)

log
(

p̂
ˆ̃p

)
0.2383 0.3381 0.4121 0.3688 0.4418 0.4048

(0.1206) (0.0627) (0.1236) (0.1146) (0.1982) (0.2223)

ε 0.7616 0.6618 0.5878 0.6311 0.5592 0.5952
Obs 851120 599918 599918 544819 1020362 751411
K-PF 58.989 97.958 233.084 527.534 69.827 98.916

Seller IV Y Y Y Y Y
Bilateral IV Y Y Y Y Y
Feenstra term Y Y Y Y
Buyer-time FE Y Y Y Y
Product-time FE Y Y Y Y
Buyer-product FE Y
Seller-product FE Y Y
Buyer-product-time FE Y Y

Notes: 2SLS estimates are obtained from estimating Equation (6). Time is monthly from April 2019 to October 2020.
The set of common suppliers of buyer b is Ω∗

i,b j,t = Ωi,b j,t ∩Ωi,b j,t−1. That is, a supplier s of buyer b is considered
common if they traded during both the current and previous month. We only consider the cases when a buyer traded
with at least two common suppliers in a given period. The first stage uses either bilateral or seller-level instruments, as
pointed out by rows six and seven. Bilateral instruments correspond to Equation (11), while seller-level instruments
correspond to Equation (10). The first row reports the estimates associated with changes in log relative unit values.
Standard errors are two-way clustered at the origin and destination state level, and are reported in parentheses below
each estimate. The third row reports the implied value for ε, which is 1 minus the estimate on the first row. The fourth
row reports the number of observations. The fifth row reports the Kleibergen-Paap F statistic from the first stage. A
product category is a 4-digit HS code and the treatment period is March-May 2020. The table contains six columns.
Each column corresponds to different combinations of instruments, fixed effects, and whether the Feenstra is included,
as pointed out by the last eight rows. All specifications include the controls mentioned in the paper.
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TABLE A6: 2SLS, extensive margin: firm-level elasticity of substitution across suppliers

(1) (2) (3) (4)

log(p) 0.7460 0.1905 0.2503 0.7707
(0.7568) (0.5827) (2.118233) (0.9545)

ε 0.2539 0.8094 0.7496 0.2292
Obs 719375 519777 502828 502828
K-PF 56.776 118.441 27.993 24.290

Seller IV Y Y Y
Bilateral IV Y Y Y
Buyer-product-time FE Y Y Y Y
Seller FE Y

Notes: The first row reports 2SLS estimates from Equation (8). Time is monthly from April 2019 to October 2020. The
first stage uses either bilateral or seller-level instruments, as pointed out by rows six and seven. Bilateral instruments
correspond to Equation (11), while seller-level instruments correspond to Equation (10). The first row reports the
estimates associated with changes in log unit values. Standard errors are two-way clustered at the origin and destination
state level, and are reported in parentheses below each estimate. The third row reports the implied value for ε, which
is 1 minus the estimate on the first row. The fourth row reports the number of observations. The fifth row reports the
Kleibergen-Paap F statistic from the first stage. A product category is a 4-digit HS code and the treatment period is
March-May 2020. Rows eight and nine report whether buyer-by-product-time or seller fixed effects are included.
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TABLE A7: 2SLS, firm-level elasticity of substitution across suppliers, by input specificity, institutional
quality, and lockdown severity

By lockdown intensity Input specificity Institutional quality

Medium Severe Differentiated Homogeneous Low Mid High

log
(

p̂
ˆ̃p

)
0.3062 0.4659 0.3766 -0.0741 0.1961 0.4186 0.6637

(0.1367) (0.4478) (0.1139) (0.2652) (0.1089) (0.3300) (0.1114)

ε 0.6938 0.5341 0.6233 1.0741 0.8038 0.5813 0.3362

Obs 1379884 1093030 1267668 457219 628824 784589 515548

K-PF 251.358 7.848 708.404 299.327 72.520 246.447 61.899

Notes: The first row reports 2SLS estimates from Equation (6). Time is monthly from April 2019 to October 2020.
For the 2SLS estimates, the set of common suppliers of buyer b is Ω∗

i,b j,t = Ωi,b j,t ∩Ωi,b j,t−1. That is, a supplier s of
buyer b is considered common if they also traded during the previous month. The first stage uses both bilateral and
seller-level instruments. Bilateral instruments correspond to Equation (11), while seller-level instruments correspond
to Equation (10). Standard errors are two-way clustered at the origin and destination state level, and are reported in
parentheses below each estimate. The third row reports the implied value for ε. The fourth row reports the number of
observations. The fifth row reports Kleibergen-Paap F statistics from the first stage. The table is comprised of seven
columns. The first two columns come from Equation (12), and aim to test the validity of the CES assumption. The
estimates are conditional on the lockdown severity of the seller, where Medium is Orange lockdown, and Severe is
Red lockdown. The middle two columns report estimates conditional on the seller’s input classified as “Differentiated"
or “Homogeneous" according to Rauch (1999). The last three columns report estimates conditional on the institutional
quality of buyer’s location. The locations of buyers are categorized in terciles according to their institutional quality
from the DevData Lab database. Districts in the first tercile of institutional quality are categorized as “Low", in the
second tercile are categorized as “Medium", and districts in the third tercile of institutional quality are categorized
as “High". This variable is measured as the average number of days a district’s courts until the first hearing. All
specifications include buyer-by-time, product-by-time, buyer-by-product, and seller-by-product fixed effects.
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TABLE A8: Firm-level elasticities of substitution across suppliers, by HS section

Section Name OLS elast. 2SLS elast.

1 Animals 0.6892 0.1648
2 Vegetables 0.7799 0.7149
3 Fats . .
4 Processed foods 0.7125 0.1917
5 Minerals 0.8326 0.3974
6 Chemicals 0.7735 0.5828
7 Plastics 0.7179 0.9796
8 Leather . .
9 Wood 0.8728 0.6154
10 Wood derivatives 0.7812 0.8915
11 Textiles 0.8249 0.8103
12 Clothing 0.8232 0.3360
13 Handcrafts 0.6737 .
14 Jewelry 0.8104 1.3721
15 Metal 0.8145 0.8142
16 Machinery 0.6072 0.8691
17 Transport equipment . .
18 Surgical instruments 0.5954 0.3799
19 Arms and ammo 0.4140 .
20 Miscellaneous 0.6903 0.8383
21 Art 0.5514 0.1486

Notes: Each row corresponds to an industry, which is defined as an HS section. Time is monthly from April 2019
to October 2020. The second column contains the name of the industry. The third and fourth columns report the
estimated elasticities by OLS and 2SLS from Equation (6). Both OLS and 2SLS estimators include product-by-time,
buyer-by-time, buyer-by-product, and seller-by-product fixed effects. Standard errors are two-way clustered at both
origin and destination states. All specifications include the controls mentioned in the paper. Elasticities were not
reported if there was low statistical power or a weak first stage.
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TABLE A9: Firm-level elasticity of substitution across suppliers, monthly vs. quarterly

Normal FEs
Monthly Quarterly

OLS 2SLS OLS 2SLS

log
(

p̂
ˆ̃p

)
0.2171 0.4538 0.1436 0.2116

(0.0133) (0.5461) (0.8564) (0.7883)

ε 0.7828 0.5461 0.8564 0.7883
Obs 2028039 2028039 1518102 1518102
K-PF . 143.413 . 11.501

Strong FEs
log
(

p̂
ˆ̃p

)
0.3062 0.5238 0.1924 0.5326

(0.0099) (0.2273) (0.0082) (0.3737)

ε 0.6937 0.4761 0.8075 0.4673
Obs 1712307 1106739 891790 961465
K-PF . 87.134 . 17.253

Notes: The first row report the OLS estimates from Equation (6), and 2SLS estimates from Equation (6). For the
2SLS estimates, the set of common suppliers of buyer b is Ω∗

i,b j,t = Ωi,b j,t ∩Ωi,b j,t−1. That is, a supplier s of buyer b is
considered common if they also traded during the previous period. The first stage uses both bilateral and seller-level
instruments. Bilateral instruments correspond to Equation (11), while seller-level instruments correspond to Equation
(10). Periods are either months or quarters depending on the frequency of the data, from April 2019 to October 2020.
The first two columns are monthly estimates, and the last two columns are quarterly estimates. Standard errors are
two-way clustered at the origin and destination state level, and are reported in parentheses below each estimate. The
third row reports the implied value for ε. The fourth row reports the number of observations. The fifth row reports
Kleibergen-Paap F statistics from the first stage. “Normal FEs" include buyer-by-period and product-by-period fixed
effects, while “Strong FEs" also include buyer-by-product and seller-by-product fixed effects.
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TABLE A10: 2SLS, firm-level elasticity of substitution across suppliers, by levels of inventory

Sellers’ industry Buyers’ industry
inventories inventories

Low High Low High

log
(

p̂
ˆ̃p

)
0.4120 0.3847 0.4504 -0.0800

(0.1881) (0.4584) (0.1984) (0.4108)

ε 0.5879 0.6152 0.5495 1.080026
Obs 700938 698996 319318 293203
K-PF 274.5876 161.5413 750.8763 192.9017

Mean Inventories/Sales 0.181 1.766 0.200 2.523

Notes: The first row reports 2SLS estimates from Equation (6). Time is monthly from April 2019 to October 2020.
For the 2SLS estimates, the set of common suppliers of buyer b is Ω∗

i,b j,t = Ωi,b j,t ∩Ωi,b j,t−1. That is, a supplier s of
buyer b is considered common if they also traded during the previous month. The first stage uses both bilateral and
seller-level instruments. Bilateral instruments correspond to Equation (11), while seller-level instruments correspond
to Equation (10). Standard errors are two-way clustered at the origin and destination state level, and are reported in
parentheses below each estimate. The third row reports the implied value for ε. The fourth row reports the number
of observations. The fifth row reports Kleibergen-Paap F statistics from the first stage. The first two columns report
estimates conditional on seller’s level of inventory, and the last two columns report estimates conditional on buyer’s
level of inventory. A seller or a buyer are “Low" inventory when they belong to a 4-digit HS code that reports a
below-median ratio of inventories to total sales. A seller or a buyer are “High" inventory when they belong to a 4-digit
HS code that reports an above-median ratio of inventories to total sales. All specifications include buyer-by-time,
product-by-time, buyer-by-product, and seller-by-product fixed effects.
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TABLE A11: Alternative specifications: 2SLS, firm-level elasticity of substitution across suppliers

(1) (2) (3) (4) (5) (6) (7) (8)

log
(

p̂
ˆ̃p

)
0.5687 0.5476 0.4927 0.4531 0.9371 0.8063 0.7084 0.7809

(0.2086) (0.1818) (0.1894) (0.1778) (0.3856) (0.3305) (0.4308) (0.3307)

ε 0.4312 0.4523 0.5072 0.5468 0.0628 0.1936 0.2915 0.2190
Obs 879997 851483 843965 816122 1026381 993583 351397 341903
K-PF 37.629 121.309 38.680 102.746 42.335 87.990 83.737 50.489

HS digits 6 6 6 6 8 8 8 8
Seller IV Y Y Y Y Y Y Y Y
Bilateral IV Y Y Y Y Y Y Y Y
Feenstra term Y Y Y Y
Buyer-time FE Y Y Y Y
Product-time FE Y Y Y Y
Buyer-product FE Y Y
Seller-product FE Y Y Y Y
Buyer-product-time FE
Seller-product-time FE

Notes: 2SLS estimates are obtained from estimating Equation (6). Time is monthly from April 2019 to October 2020.
The set of common suppliers of buyer b is Ω∗

i,b j,t = Ωi,b j,t ∩Ωi,b j,t−1. That is, a supplier s of buyer b is considered
common if they also traded during both the current and previous month. In all specifications, the first stage uses both
bilateral and seller-level instruments as pointed out in rows seven and eight. Bilateral instruments correspond to Equa-
tion (11), while seller-level instruments correspond to Equation (10). The first row reports the estimates associated
with changes in relative unit values in logs. Standard errors are two-way clustered at the origin and destination state
level, and are reported in parentheses below each estimate. The third row reports the implied value for ε, which is
1 minus the estimate on the first row. The fourth row reports the number of observations. The fifth row reports the
Kleibergen-Paap F statistic from the first stage. A product category is either a 6-digit or 8-digit HS code, as pointed
out by the sixth row, and the treatment period is March-May 2020. The table contains eight columns. Each column
corresponds to different combinations of HS codes, fixed effects, and whether the Feenstra is included, as pointed out
by the last nine rows. All specifications include the controls mentioned in the paper.
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B APPENDIX FIGURES

FIGURE A1: Variation over time in aggregate outcomes

(a) Number of sellers (b) Number of buyers

(c) Number of transactions (d) Total sales

Notes: This figure consists of 4 panels. In each panel, the horizontal axis is time, and the vertical axis is a different
aggregate outcome. In the first panel, we show the number of sellers that reported a transaction by period. In the
second panel, we show the number of buyers that reported a transaction by period. In the third panel, we show the
number of transactions that were reported in a given period. In the fourth panel, we show the total sales for a given
period.
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FIGURE A2: Google mobility trends by lockdown zone

(a) Retail and recreation (b) Grocery and pharmacy (c) Parks

(d) Transit stations (e) Workplaces (f) Residential

Notes: These plots are constructed using Google Mobility Trends data, which shows how visits and length of stay at
different places change compared to a baseline. The baseline is the median value, for the corresponding day of the
week, during January 3rd - February 6th 2020. The raw data is at the daily frequency for each district in India. We
collapse the data at a weekly frequency, and at the zone level. Each panel corresponds to mobility in different places.

xii



FIGURE A3: Residuals of log( p̂) on seller-by-HS-by-time fixed effects

Notes: These figures show densities of residuals from regressing log(p̂) on seller-by-HS-by-time fixed effects and
distance regressors between sellers and buyers, by HS-digit codes. The figure on the left shows the density for values
from −2 to 2.
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FIGURE A4: Distribution of links and sales across lockdown zones

Share distributions of colors
(a) Sellers in Red (b) Sellers in Orange (c) Sellers in Green

(d) Buyers in Red (e) Buyers in Orange (f) Buyers in Green

Share of sales and purchases by color zone of destination districts
(g) Sales (h) Purchases

Notes: This figure comprises two sets of panels. The first six figures are the first panel, and the last two figures are the
second panel. For the first panel, in the three upper sub-figures, each panel plots the distribution of the share of buyers
located in Red, Orange, or Green districts. Each sub-figure corresponds to sellers located in their corresponding color
district. In the middle three sub-figures, each sub-figure plots the distribution of the share of sellers located in Red,
Orange, or Green districts. Each sub-figure corresponds to buyers located in their corresponding color district. The
time period is April 2018 - February 2020. For the lower panel, on the left sub-figure, for each HS section (horizontal
axis), we plot the share of total sales of firms located in our large Indian state by the zone of selling districts. In the
lower right sub-figure, for each HS section (horizontal axis), we plot the share of total purchases of firms located in
our large Indian state by the zone of buying districts. The time period for this data is 2019.

xiv



FIGURE A5: Elasticities ε by seller’s industry

Notes: The vertical axis is the OLS estimate of ε, and the horizontal axis is the 2SLS estimate of ε. Time is monthly
from April 2019 to October 2020. These estimates come from estimating Equation (6). For the 2SLS estimate, the set
of common suppliers of buyer b is Ω∗

i,b j,t =Ωi,b j,t∩Ωi,b j,t−1. That is, a supplier s of buyer b is considered common if they
traded in both the current and previous month. The first stage uses both bilateral and seller-level instruments. Bilateral
instruments correspond to Equation (11), and seller-level instruments correspond to Equation (10). An industry is an
HS section. The size of each bubble is determined by total sales in the corresponding industry. See Table A8 for
industry-specific numbers.
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FIGURE A6: Change in Product Category Links, before and after lockdown

(a) Sellers (b) Buyers

Notes: The figure has two density plots. On the left, we study sellers; on the right, buyers. In the left plot, we show
the distribution of the share of sellers that sold goods to a given product category in both periods t and t − 1, where
these periods are one year apart. In the right plot, we show the distribution of the share of buyers that purchased goods
from a given product category in both periods t and t − 1, where these periods are one year apart. Product categories
are 4-digit HS codes. The green densities are for periods before Covid-19 lockdowns, where t is between June 2019
and October 2019, and t − 1 is between June 2018 and October 2018. The red densities are for periods after Covid-19
lockdowns, where t is between June 2020 and October 2020, and t − 1 is between June 2019 and October 2019.
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C DATA

Exposure variables. We construct two exposure variables at the firm level: EDs,i,t and IMs,i,t .
EDs,i,t is the exposure of firm s selling product i to global demand shocks in month t. IMs,i,t is the
exposure of firm s selling product i to global supply shocks in month t. First, we construct these
exposures by country, such that

EDs,i,x,t =
(

Ys,i,x,0∑
x′Ys,i,x′,0

)
Xi,x,t

IMs,i,m,t =
(

Ys,i,m,0∑
m′Ys,i,m′,0

)
Mi,m,t ,

where Ys,i,x,0 is the value of goods of seller s of product i shipped to country x in 2018, Ys,i,m,0 is the
value of goods of seller s of product i shipped from country m in 2018, Xi,x,t is the value of export
demand from country x for product i in month t, excluding demand for Indian products, and Mi,m,t

is the value of import demand to country x for product i in month t, excluding demand for Indian
products. We then construct our exposure variables as a weighted sum of these measures across
countries, such that

EDs,i,t =
∑

x

EDs,i,x,t

IMs,i,t =
∑

m

IMs,i,m,t

Labor and sales. Our firm-to-firm dataset lacks data on the number of employees and final sales.
We obtain data on the number of employees and total sales from an external dataset for a subset of
our firms. We then estimate an OLS regression of both labor and final sales on observable variables
in our firm-to-firm dataset, store the OLS estimates, and use them to predict labor and final sales
for all firms.

We scrape data on the number of employees and total sales from the website IndiaMART,
India’s largest B2B digital platform. We scraped around 300,000-400,000 firm profiles, and then
sent them to the tax authority to be matched with our firm-to-firm trade dataset. The matching
procedure (conducted by the government) yielded 50,720 unique firms.

Each firm reports its number of employees and annual turnover (sales), both reported in
brackets. The reported brackets for sales are: up to 50 Lakh, 50 Lakh-1 Crore, 1-2 Crore, 2-
5 Crore, 5-10 Crore, 10-25 Crore, 25-50 Crore, 50-100 Crore, 100-500 Crore 500-1,000 Crore,
1,000-5,000 Crore, 5,000-10,000 Crore, more than 10,000 Crore. First, we convert each reported
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number into rupees, since sales in the trade dataset are reported in rupees.37 Then, for each firm we
assign the median value of its corresponding sales bracket. For the last bracket, we consider the
upper bound to be 100,000 Crore. The reported brackets for labor are: up to 10 employees, 11-25,
26-50, 51-100, 101-500, 501-1000, 1001-2000, 2001-5000, and more than 5000 employees. For
each firm, we assign the median value of its corresponding labor bracket. For the last bracket, we
consider the upper bound to be 50,000 employees.

We then estimate the following OLS regressions:

log(laborn) = α0 +α1 log(salesn) +α2 log(distancen) + εl
i

log( f inaln) = β0 +β1 log(salesn) +β2 log(distancen) + ε f
i ,

where salesn are total sales of intermediates of firm n, distancen is the average distance in kilo-
meters of all firms’ registered transactions, laborn is the number of employees constructed as
previously explained, and f inaln is final sales. We constructed final sales by subtracting total in-
termediate sales from total sales, where we construct the former directly from our firm-to-firm
dataset. In almost all cases, this difference was positive, which reassures that IndiaMART indeed
reports total sales. Whenever the differences were negative, we input a value of 0, which implies
that all firm’s sales are of intermediates.

We obtain the following estimated elasticities: (α̂0, α̂1, α̂2) = (−2.1138,0.2502,0.2853), and
(β̂0, β̂1, β̂2) = (9.8848,0.3665,0.4227). They are significant at the 1% confidence level. We then
use these estimates to predict labor and final sales to all firms in our dataset.

Dijkstra algorithm We now list the steps of the Dijkstra algorithm we used to construct our
seller-buyer-level instruments. We obtained a set of shapefiles of district administrative bound-
aries for India according to India’s 2011 census. We reprojected the shapefiles into an Asian/South

Equidistance Conic projection, which is the projection that best preserves the distance measure-
ments. Once shapefiles are reprojected, the objective is to construct a transportation network be-
tween Indian districts.

First, we obtain the centroid of each district in India. Then, we construct a network structure
according to the set of centroids. There are many ways to construct a network, so we need to
take a stance on how to form the connections between centroids. For each centroid, we generate
connections to the k closest centroids according to Euclidean distances.38 We follow Fajgelbaum

37100,000 rupees = 1 Lakh; and 10,000,000 rupees = 1 Crore.
38Consider the set of nodes Φ, where K ≡ |Φ| is the number of nodes. The number of connections per node k

could range from 0 up to K, where each represents extreme cases of network formation. k = 0 is a network without
connections, so it is not possible to run a Dijkstra algorithm since it is not possible to go from one node to another.
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and Schaal (2020) and consider k = 8 such that we consider the main cardinal directions (i.e. north,
south, east, west, north-east, south-east, north-west, south-west).

We now run the Dijkstra algorithm. For all district pairs, the algorithm provides us with
the list of all districts that comprise the route between the district pair, and the distance of each
leg that comprise the route. Using the names of the districts, we use the lockdown data to assign
a lockdown color to each district along the route, and obtain our seller-buyer-level instruments.
Our first instrument is the share of districts in a route that are Red, Orange, or Green. When
calculating these shares, we rule out the zone where the buyer resides so we do not consider
demand-side shocks in our instrument. Using the distance of each leg, our second instrument is
the share of meters of the route that are Red, Orange, or Green. We consider a leg to be of color
x = Red,Orange,Green whenever the origin district was of color x. In this case, we also ignore the
color of the district where the buyer resides.

D DERIVATIONS

D.1 Estimation of firm-level elasticities of substitution across suppliers

In this section, we describe the steps to derive the firm-level elasticity of substitution across sup-
pliers for the same product. First, we describe the model and the equations we take to the data.
Second, explain how we construct price indices we need to estimate this elasticity. Third, we de-
scribe how we account for the entry and exit of suppliers for the estimation. Finally, we explain
how we construct the seller-level and seller-buyer-level instruments we use to causally estimate
our elasticity.

k = K is a fully-connected network, where all nodes are connected with each other. Running a Dijkstra algorithm on
this scenario is trivial since the shortest distance between any pair of nodes is their connection itself. Therefore, a
feasible number of connections per node must be k ∈ (0,K).
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D.1.1. Expression to estimate firm-level elasticities of substitution across suppliers

A firm b selling product j ∈ F maximizes profits subject to its technology and to a CES bundle of
intermediate inputs:

max pb jyb j − wb jlb j −

∑
i

∑
s

psi,b jxsi,b j

s.t.

yb j = Ab

(
wbl
(
lb j
)α−1

α + (1 − wbl)
(
xb j
)α−1

α

) α
α−1
,

xb j =

(∑
i

w
1
ζ

i,b jx
ζ−1
ζ

i,b j

) ζ
ζ−1

,

xi,b j =

(∑
s

µ
1
ε
si,b jx

ε−1
ε

si,b j

) ε
ε−1

The first order condition with respect to xsi,b j is

[
xsi,b j

]
:pb j

( α

α− 1

)
yb j
(
Θ1

b j

)−1
(1 − wbl)

(
α− 1
α

)
x

α−1
α

−1
b j(

ζ

ζ − 1

)
xb j
(
Θ2

b j

)−1
wi, j

(
ζ

ζ − 1

)
x

ζ−1
ζ

−1
i,b j( ε

ε− 1

)
xi,b j

(
Θ3

i,b j

)−1
µ

1
ε
si,b j

(
ε− 1
ε

)
x

ε−1
ε

−1
si,b j = psi,b j,

=pb jyb j
(
Θ1

b j

)−1
(1 − wbl)x

α−1
α

b j(
Θ2

b j

)−1
wi, jx

ζ−1
ζ

i,b j(
Θ3

i,b j

)−1
µ

1
ε
si,b jx

−
1
ε

si,b j = psi,b j,

where {Θ1
b j,Θ

2
b j,Θ

3
i,b j} are composite terms that cancel out in the next steps. Now, consider the

first order conditions with respect to xsi,b j and xs′i,b j and divide them, such that
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µ
1
ε
si,b jx

−1
ε

si,b j

µ
1
ε

s′i,b jx
−

1
ε

s′i,b j

=
psi,b j

ps′i,b j
,

x
−1
ε

si,b j p
−1
ε

si,b j

x
−

1
ε

s′i,b j p
−1
ε

s′i,b j

=
p

1−
1
ε

si,b jµ
−

1
ε

si,b j

p
1−

1
ε

s′i,b jµ
−

1
ε

s′i,b j

,

(
xsi,b j psi,b j

)−
1
ε

(
p

ε−1
ε

s′i,b jµ
−

1
ε

s′i,b j

)
= p

ε−1
ε

si,b jµ
−

1
ε

si,b j

(
xs′i,b j psi,b j

)−
1
ε ,(

xsi,b j psi,b j
)(

p1−ε
s′i,b jµs′i,b j

)
= p1−ε

si,b jµsi,b j
(
xs′i,b j psi,b j

)
,(

PMsi,b j
)(

p1−ε
s′i,b jµs′i,b j

)
= p1−ε

si,b jµsi,b j
(
PMs′i,b j

)
,(

PMsi,b j
)∑

s′

(
p1−ε

s′i,b jµs′i,b j
)

= p1−ε
si,b jµsi,b j

∑
s′

(
PMs′i,b j

)
,(

PMsi,b j
)

p1−ε
i,b j = p1−ε

si,b jµsi,b jPMi,b j,

PMsi,b j

PMi,b j
=
(

psi,b j

pi,b j
µ

1
1−ε
si,b j

)1−ε

,

log
(

PMsi,b j

PMi,b j

)
= (1 − ε) log

(
psi,b j

pi,b j

)
+ log

(
µsi,b j

)
,

where PMsi,b j ≡ psi,b jxsi,b j, p1−ε
i,b j ≡

∑
s′ p

1−ε
s′i,b jµs′i,b j, and PMi,b j ≡

∑
s′ PMs′i,b j. This is the derivation

of Equation (3).

D.1.2. Constructing price indices

In this section, we derive the expressions that allow us to construct price indexes based on observ-
able data. First, go back to the derivation in Appendix D.1, where

(
PMsi,b j

)
p1−ε

i,b j = p1−ε
si,b jµsi,b jPMi,b j.

In the data, we observe prices and expenditures over time, so we introduce a time dimension
such that (

PMsi,b j,t
)

p1−ε
i,b j,t = p1−ε

si,b j,tµsi,b j,tPMi,b j,t ,

where t is a month. We can now express this equation in changes, such that(
P̂Msi,b j,t

)
p̂1−ε

i,b j,t = p̂1−ε
si,b j,tµ̂si,b j,tP̂Mi,b j,t ,
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where x̂t ≡ xt
xt−1

. Our objective is for p̂i,b j,t not to depend on µ̂si,b j,t , which are not observable. To do
this, we rely on Redding and Weinstein (2020). The key assumption is that the overall importance
of a product category in a buyer’s input use is time-invariant. Concretely, the geometric mean of
µsi,b j,t across common sellers is constant. From the maximization problem of the firm, we obtain
the following expression for the CES price index at the buyer level:

pi,b j,t =

 ∑
s∈Ωi,b j,t

µsi,b j,t p1−ε
si,b j,t

 1
1−ε

,

where Ωi,b j,t is the set of all sellers that provided to buyer b in time t. We apply Shephard’s Lemma
to this CES price function, which in turn yields an expression for expenditure share:

ssi,b j,t =
µsi,b j,t p1−ε

si,b j,t

p1−ε
i,b j,t

,

where ssi,b j,t ≡ PMsi,b j,t∑
s∈Ωi,b j,t

PMsi,b j,t
. We can then rewrite this expression such that

pi,b j,t = psi,b j,t

(
µsi,b j,t

ssi,b j,t

) 1
1−ε

,∀s ∈ Ωi,b j,t .

This expression in changes is

p̂i,b j,t = p̂si,b j,t

(
µ̂si,b j,t

ŝsi,b j,t

) 1
1−ε

.

Now, common suppliers for a buyer b in time t is the set of suppliers Ω∗i,b j,t that sold to
buyer b in the current and previous period (i.e. Ω∗i,b j,t ≡ Ωi,b j,t ∩Ωi,b j,t−1), where N∗i,b j,t ≡

∣∣Ω∗i,b j,t

∣∣
is the number of common sellers for buyer b in time t. We now apply a geometric mean to this
expression, such that
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p̂
N∗i,b j,t
i,b j,t =

N∗i,b j,t∏
s=1

{
p̂si,b j,t

(
µ̂si,b j,t

ŝsi,b j,t

) 1
1−ε

}
,

p̂
N∗i,b j,t
i,b j,t =

N∗i,b j,t∏
s=1

p̂si,b j,t

N∗i,b j,t∏
s=1

µ̂
1

1−ε
si,b j,t

N∗i,b j,t∏
s=1

ŝ
1

ε−1
si,b j,t ,

p̂i,b j,t =
N∗i,b j,t∏
s=1

p̂
1

N∗i,b j,t
si,b j,t

N∗i,b j,t∏
s=1

µ̂

1
N∗i,b j,t
si,b j,t

 1
1−ε N∗i,b j,t∏

s=1

(
ŝ

1
N∗i,b j,t
si,b j,t

) 1
ε−1

,

p̂i,b j,t = ̂̃pi,b j,t
̂̃s 1

ε−1
i,b j,t

N∗i,b j,t∏
s=1

µ̂

1
N∗i,b j,t
si,b j,t

 1
1−ε

.

We now formally state the assumption we require to move forward, which is

µ̃i,b j,t =
N∗i,b j,t∏
s=1

µ

1
N∗i,b j,t
si,b j,t =

N∗i,b j,t∏
s=1

µ

1
N∗i,b j,t
si,b j,t−1 = µ̃i,b j,t−1.

Then, the last term of our expression is

N∗i,b j,t∏
s=1

µ̂

1
N∗i,b j,t
si,b j,t =

N∗i,b j,t∏
s=1

(
µsi,b j,t

µsi,b j,t−1

) 1
N∗i,b j,t

,

=

∏N∗i,b j,t
s=1 µ

1
N∗i,b j,t
si,b j,t∏N∗i,b j,t

s=1 µ

1
N∗i,b j,t
si,b j,t−1

,

=
µ̃i,b j,t

µ̃i,b j,t−1
,

= 1.

So our final expression boils down to

p̂1−ε
i,b j,t =

̂̃p1−ε

i,b j,t̂̃si,b j,t

,

where p̃i,b j,t ≡
∏

s p
1

N∗i,b j,t
si,b j,t is a geometric mean of unit values across common suppliers, and s̃i,b j,t ≡
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∏
s s

1
N∗i,b j,t
si,b j,t is a geometric mean of expenditure shares across common suppliers. Notice that we have

reached to our objective, since now ̂̃pi,b j,t is independent of µsi,b j,t . Finally, the expression we take
to the data is (

P̂Msi,b j,t

)
p̂1−ε

i,b j,t = p̂1−ε
si,b j,tµ̂si,b j,tP̂Mi,b j,t ,(

P̂Msi,b j,t

)̂̃p1−ε

i,b j,t
̂̃s−1

i,b j,t = p̂1−ε
si,b j,tµ̂si,b j,tP̂Mi,b j,t ,

P̂Msi,b j,t

P̂Mi,b j,t

=

(
p̂si,b j,t̂̃pi,b j,t

)1−ε(̂̃si,b j,tµ̂si,b j,t

)
,

log

(
P̂Msi,b j,t

P̂Mi,b j,t

)
= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(̂̃si,b j,tµ̂si,b j,t

)
,

log

(
P̂Msi,b j,t

P̂Mi,b j,t

)
= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(̂̃si,b j,t

)
+ log

(
µ̂si,b j,t

)
.

D.1.3. Addressing the entry and exit of suppliers

In this section, we explain how we address the fact that seller and buyer matches do not happen
in every period (i.e. entry and exit of sellers). The concern is that not taking into account the fact
that sellers and buyers do not trade in every period could induce a bias in the estimation of ε. We
address this by including a correction term by Feenstra (1994) in our regressions. First, notice we
can write down the expenditure share as

ssi,b j,t ≡ λi,b j,ts∗si,b j,t ,

where λi,b j,t is the Feenstra correction term, and s∗si,b j,t is the expenditure share with respect to total
expenditure on common suppliers. Notice that these terms are constructed as

ssi,b j,t ≡
PMsi,b j,t∑

s∈Ωi,b j,t
PMsi,b j,t

,

λi,b j,t ≡

∑
s∈Ω∗i,b j,t

PMsi,b j,t∑
s∈Ωi,b j,t

PMsi,b j,t
,

s∗si,b j,t ≡
PMsi,b j,t∑

s∈Ω∗i,b j,t
PMsi,b j,t

.
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In changes, the expression for expenditure shares is

ŝsi,b j,t = λ̂i,b j,t ŝ∗si,b j,t .

Then, the geometric mean for expenditure shares is

̂̃si,b j,t =
N∗i,b j,t∏
s=1

ŝ
1

N∗i,b j,t
si,b j,t ,

=
N∗i,b j,t∏
s=1

(
λ̂i,b j,t ŝ∗si,b j,t

) 1
N∗i,b j,t ,

= λ̂i,b j,t

N∗i,b j,t∏
s=1

(
ŝ∗si,b j,t

) 1
N∗i,b j,t ,

λ̂i,b j,t
̂̃s∗i,b j,t .

So the final expression we take to the data is

log

(
P̂Msi,b j,t

P̂Mi,b j,t

)
= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(̂̃si,b j,t

)
+ log

(
µ̂si,b j,t

)
,

= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(
λ̂i,b j,t

̂̃s∗i,b j,t

)
+ log

(
µ̂si,b j,t

)
,

= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(
λ̂i,b j,t

)
+ log

(̂̃s∗i,b j,t

)
+ log

(
µ̂si,b j,t

)
.

D.1.4. Addressing endogeneity concerns

The equation from the previous section is what we take to the data. Nevertheless, there are further
endogeneity issues that would contaminate our estimates for ε. In particular, Covid-19 lockdowns
could have also induced changes in demand, which in turn would bias our estimates. For example,
if Covid-19 shocks also induce negative demand shocks, our estimates would then be biased up-
wards. In this section, we derive our instruments. First, we consider non-arbitrage in shipping, so
prices at the origin and destination between sellers and suppliers are related as

psi,b j,t = psi,tτsb,t ,

where psi,t is the marginal cost (MC) of production of good i for seller s in month t, τsb,t is the
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iceberg cost of transporting the good from seller s to buyer b in month t. Now, we can then express
this in changes, such that

p̂si,b j,t = p̂si,t τ̂sb,t .

In logarithms, we have

log
(

p̂si,b j,t
)

= log
(

p̂si,t
)

+ log
(
τ̂sb,t
)
.

These two components of price imply two instruments. First, our seller-level instrument
uses variation in MC at the seller-product level due to lockdown measures at the seller’s district.
To isolate variation in marginal costs driven by seller’s lockdown zone, we interact the lockdown
indicator (Lockt) which takes the value 1 between March and May with indicator variables Redos

and Orangeos that equal 1 whenever seller s was located in a district o that was either Red or
Orange during the lockdown. Then, our excluded instruments are

log(p̂si,t) = βR,pRedo(s)Lockt +βO,pOrangeo(s)Lockt +ν p
si,t .

Now we explain how we construct the instrument at the seller-buyer level. We have to take a
stance about the functional form of the trade cost τsb,t . We assume that trade costs are proportional
to the travel time of the transportation of intermediate inputs, such that

τsb,t = TravelTimeσsb,t .

If we express this in changes, we get

τ̂sb,t = ̂TravelTime
σ

sb,t .

We exploit variation from the Covid-19 lockdown, which induced exogenous variation in
the travel time between location pairs of sellers and buyers. Given this, we assume the following
difference-in-differences setup for travel time:

log
(

̂TravelTimesb,t

)
= βR,T Redo(s)d(b)Lockt +βO,T Orangeo(s)d(b)Lockt +νT

sb,t ,

where Redo(s)d(b) and Orangeo(s)d(b) are the share of the number of districts or of distance designated
as Red and Orange, respectively, along the route between seller s and buyer b. We constructed
these variables using Dijkstra algorithms. Further details about this are in Appendix C. Combining
the expression for changes in travel time due to the lockdown and trade costs, we get the following
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expression for our seller-buyer-level excluded instruments

log(τ̂sb,t) = βR,τRedo(s)d(b)Lockt +βO,τOrangeo(s)d(b)Lockt +ντsb,t ,

where βR,τ ≡ σβR,T , βO,τ ≡ σβO,T , and ντsi,b j,t ≡ σνT
si,b j,t . Together, all excluded instruments are

such that

log
(

p̂si,b j,t
)

= βR,pRedo(s)Lockt +βO,pOrangeo(s)Lockt+

βR,τRedo(s)d(b)Lockt +βO,τOrangeo(s)d(b)Lockt +νsi,b j,t ,

where νsi,b j,t ≡ ν p
si,t +ντsb,t .

D.2 Estimation of firm-level elasticities of substitution across products

In this section, we describe the steps to derive the firm-level elasticity of substitution across prod-
ucts. First, we describe the model and the equations we take to the data. Second, we describe how
we construct price indices we need to estimate this elasticity. Finally, we describe the instrument
we use to causally estimate our elasticity.

D.2.1. Expressions to estimate firm-level elasticities of substitution across products

We rewrite the initial maximization problem, so

max pb jyb j − wb jlb j −

∑
i

pi,b jxi,b j

s.t.

yb j = Ab

(
wbl
(
lb j
)α−1

α + (1 − wbl)
(
xb j
)α−1

α

) α
α−1
,

xb j =

(
I∑
i

w
1
ζ

i,b jx
ζ−1
ζ

i,b j

) ζ
ζ−1

,

pi,b j =

(∑
s

µsi,b j p1−ε
si,b j

) 1
1−ε
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The first order condition with respect to xi,b j is

[
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]
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ζ
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i,b jx
−1
ζ

i,b j,

where {Θ4
b j,Θ

5
b j} are composite terms that cancel out in the next steps. Now, consider the same

first-order conditions with respect to xi′,b j and divide them, such that

w
1
ζ

i,b jx
−1
ζ

i,b j

w
1
ζ

i′ ,b j
x

−1
ζ

i′ ,b j

=
pi,b j

pi′ ,b j
,

w
1
ζ

i,b jx
−1
ζ

i,b j p
−

1
ζ

i,b j

w
1
ζ

i′ ,b j
x

−1
ζ

i′ ,b j
p

−
1
ζ

i′ ,b j

=
pi,b j p

−
1
ζ

i,b j

pi′ ,b j p
−

1
ζ

i′ ,b j

,

wi′ ,b j

(
xi,b j pi,b j

)
wi,b j

(
xi′ ,b j pi′ ,b j

) =
p1−ζ

i,b j

p1−ζ

i′ ,b j

,

PMi,b j

(
wi′ ,b j p

1−ζ

i′ ,b j

)
= PMi′ ,b j

(
wi,b j p

1−ζ
i,b j

)
,∑

i′
PMi,b j

(
wi′ ,b j p

1−ζ

i′ ,b j

)
=
∑

i′
PMi′ ,b j

(
wi,b j p

1−ζ
i,b j

)
,

PMi,b j

∑
i′

wi′ ,b j p
1−ζ

i′ ,b j
= wi,b j p

1−ζ
i,b j

∑
i′

PMi′ ,b j,

PMi,b j p
1−ζ
b j = wi,b j p

1−ζ
i,b j PMb j,

PMi,b j

PMb j
=

wi,b j p
1−ζ
i,b j

p1−ζ
b j

,

PMi,b j

PMb j
=
(

w
1

1−ζ

i,b j
pi,b j

pb j

)1−ζ

,

log
(

PMi,b j

PMb j

)
= (1 − ζ) log

(
pi,b j

pb j

)
+ log

(
wi,b j

)
,

where PMb j ≡
∑

i PMi,b j, and pb j =
(∑

i wi,b j p
1−ζ
i,b j

) 1
1−ζ

. As we did for the estimation of the elasticity
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of substitution across suppliers, we introduce a time dimension, apply Shephard’s lemma to this
CES price function, and also assume that the overall importance of the composite intermediates is
time-invariant, so

si,b j,t =
wi,b j,t p

1−ζ
i,b j,t

p1−ζ
b j,t

,

pb j,t = pi,b j,t

(
wi,b j,t

si,b j,t

) 1
1−ζ

,

p̂b j,t = p̂i,b j,t

(
ŵi,b j,t

ŝi,b j,t

) 1
1−ζ

,

p̂Nb j,t
b j,t =

Nb j,t∏
i=1

p̂i,b j,t

(
ŵi,b j,t

ŝi,b j,t

) 1
1−ζ

,

p̂Nb j,t
b j,t =

Nb j,t∏
i=1

p̂i,b j,t

Nb j,t∏
i=1

ŵ
1

1−ζ

i,b j,t

Nb j,t∏
i=1

ŝ
1

ζ−1
i,b j,t ,

p̂b j,t =
Nb j,t∏
i=1

p̂
1

Nb j,t
i,b j,t

(Nb j,t∏
i=1

ŵ
1

Nb j,t
i,b j,t

) 1
1−ζ
(Nb j,t∏

i=1

ŝ
1

Nb j,t
i,b j,t

) 1
ζ−1

,

p̂b j,t = ̂̃pb j,t
̂̃w 1

1−ζ

b j,t
̂̃s 1

ζ−1
b j,t ,

p̂b j,t = ̂̃pb j,t
̂̃s 1

ζ−1
b j,t ,

p̂b j,t =
̂̃pb j,t̂̃s 1

1−ζ

b j,t

,

where p̃b j,t ≡
∏Nb j,t

i=1 p̃
1

Nb j,t
i,b j,t is the geometric mean of unit values across product categories that buyer

b sources from, and s̃b j,t ≡
∏Nb j,t

i=1 s̃
1

Nb j,t
i,b j,t is the geometric mean of expenditure shares across products.

Now, if we also introduce a time dimension into our estimating equation, express it in changes,
and consider our expression for unit values, we have

xxix



PMi,b j,t p
1−ζ
b j,t = wi,b j,t p

1−ζ
i,b j,tPMb j,t ,

P̂Mi,b j,t p̂
1−ζ
b j,t = ŵi,b j,t p̂

1−ζ
i,b j,tP̂Mb j,t ,

log

(
P̂Mi,b j,t

P̂Mb j,t

)
= (1 − ζ) log

(
p̂i,b j,t

p̂b j,t

)
+ log

(
ŵi,b j,t

)
,

log

(
P̂Mi,b j,t

P̂Mb j,t

)
= (1 − ζ) log

 p̂i,b j,t̂̃pb j,t̂̃s 1
1−ζ
b j,t

+ log
(
ŵi,b j,t

)
,

log

(
P̂Mi,b j,t

P̂Mb j,t

)
= (1 − ζ) log

(
p̂i,b j,t̂̃pb j,t

)
+ log

(̂̃sb j,t

)
+ log

(
ŵi,b j,t

)
.

D.2.2. Constructing price index pi,b j,t

To estimate ζ , we need values for pi,b j,t , which are not directly observed in the data since pi,b j,t ≡(∑
sµsi,b j,t p1−ε

si,b j,t

) 1
1−ε , which is a function of ε and µsi,b j,t . For ε, we consider ε = ε̂, where ε̂ is our

estimated elasticity. For µsi,b j,t , we use the fact that the residuals when estimating ε are a function
of these shocks. Recall that

log

(
P̂Msi,b j,t

P̂Mi,b j,t

)
= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ Xβ +φsi,b j,t ,

where φsi,b j,t = log
(
µ̂si,b j,t

)
= log

(
µsi,b j,t

µsi,b j,t−1

)
= log

(
µsi,b j,t

)
− log

(
µsi,b j,t−1

)
are the residuals of this

estimating equation. By assumption, log
(
µsi,b j,t

)
are i.i.d and normally distributed shocks with

mean µ and variance σ2, so the mean and variance of log
(
µsi,b j,t

)
− log

(
µsi,b j,t−1

)
is 0 and 2σ2,

respectively. We now construct pi,b j,t by the following steps:

1. Estimate the 2SLS regression to obtain the estimate ε̂;

2. Recover predicted values for the error term φ̂si,b j,t ;

3. Calculate the empirical mean and variance of φ̂si,b j,t :
{
µ̂φ, σ̂

2
φ

}
;

4. Recover the values for mean and variance of log
(
µsi,b j,t

)
, such that: (i) µ = µ̂φ and σ2 =

σ̂2
φ

2 ;

5. Make a random draw for log
(
µsi,b j,0

)
, which is drawn from a normal distribution with mean

µ̂φ and variance
σ̂2
φ

2 ;
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6. For a given µsi,b j,0, recover µsi,b j,t according to the following law of motion:

log
(
µsi,b j,t

µsi,b j,t−1

)
= φ̂si,b j,t ,

µsi,b j,t

µsi,b j,t−1
= exp

(
φ̂si,b j,t

)
,

µsi,b j,t = exp
(
φsi,b j,t

)
µsi,b j,t−1;

7. We then construct unit values by

pi,b j,t ≡

(∑
s

µsi,b j,t p1−ε̂
si,b j,t

) 1
1−ε̂

D.2.3. Constructing instruments

To obtain an exogenous shifter of relative unit values, which we use to obtain an unbiased estimate
of ζ , we rely on the instruments we use to estimate ε. Consider the set of instruments Zsi,b j,t . Then,
we consider the new set of instruments:

Wi,b j,t = Zsi,b j,t =
1

Ni,b j,t

∑
s

Zsi,b j,t .

Consider the instrument that varies across both the color zone of the seller and the buyer (i.e.
the share of districts in the Red zones within the route between the location of the seller and of the
buyer). Then, the new instrument is the simple average of these shares across sellers. Intuitively, a
higher share of districts in the Red zone should help predict a larger positive shock on unit values.

E SIMULATIONS USING QUANTITATIVE MODEL

E.1 Deriving expression for shock propagation through GDP

In this section, we discuss the details of the simulation using the quantitative model. First, recall
the notations used in the paper. N is the number of firms, and I is the number of product categories.
λk is the Domar weight of firm or sector k. θk is the elasticity of substitution corresponding to the
kth reproducible sector. Ωli is the (l, i)thelement of the (N + I + 2) input output matrix Ω, which
captures the direct reliance of l on i as a supplier . ψli is the (l, i)thelement of the (N + I +2) Leontief
inverse matrix ψ ≡ (1 −Ω)−1, which captures the direct and indirect reliance of l on i as a supplier.
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The aggregate change in GDP (∆logy) in response to changes in productivity of firm j

(∆logA j) up to a second order is given by the following:

∆logy =
N∑
j=1

∂logy
∂logA j

(∆logA j) +
1
2

N∑
i=1

N∑
j=1,i 6= j

∂2logy
∂logAi∂logA j

(∆logAi)(∆logA j) +
1
2

N∑
i=1

∂2logy
∂logA2

i
(∆logAi)2.

(19)

Following Baqaee and Farhi (2019), after replacing second order terms, we obtain

=
N∑
j=1

λ j(∆logA j) +
1
2

N∑
i=1

N∑
j=1,i6= j

(
N∑

k=0

(θk − 1)λkCovΩ(k)(ψ(i),ψ( j))

)
(∆logAi)

(
∆logA j

)
+

1
2

N∑
i=1

(
N∑

k=0

(θk − 1)λkVarΩ(k)ψ(i)

)
(∆logAi)2

=
N∑
j=1

λ j(∆logA j) +
1
2

N∑
i=1

N∑
j=1,i6= j

(
N∑

k=0

(θk − 1)λk

((
N+F∑
l=1

Ωklψliψl j

)
(20)

−

(
N+F∑
l=1

Ωklψli

)(
N+F∑
l=1

Ωklψl j

)
(∆logAi)

(
∆logA j

)
+

1
2

N∑
i=1

(
N∑

k=0

(θk − 1)λk

((
N+F∑
l=1

Ωklψliψli

)
−

(
N+F∑
l=1

Ωklψli

)(
N+F∑
l=1

Ωklψli

)))
(∆logAi)2

=
N∑
j=1

λ j(∆logA j) +
1
2

B +
1
2

C.

We now write down the expressions for terms B and C in matrix form to evaluate second-
order effects. In terms of notation, Jm,n is a matrix of ones of size m by n,× is matrix multiplication,
and · is element-by-element matrix multiplication.

Term B. This term primarily captures the second-order effects on GDP that operates through
changes in firm i′s Domar weight in response to productivity shocks to firm j, where j ∈ N, j 6= i.
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We construct this term in matrix form by sequentially deriving the following matrices:

M = ψ · (∆logA)T ,

N = J(N+I+2,N+I+2) ·
(

J(N+I+2,1)×
(
ψ · (∆logA)T

))
−

(
ψ · (∆logA)T

)
,

Covar1 = Ω× (M ·N),

Covar21 = Ω×M,

Covar22 = Ω×N,

Covar2 = Covar21 ·Covar22,

B =
(

(θ − 1) ·λ
)
×
(

Covar1 −Covar2
)
.

Term C. This term primarily captures the second-order effects on GDP that operates through
changes in firm i′s Domar weight in response to productivity shocks to firm i itself. In matrix
form, this term is

C =
((

(θ − 1) ·λ
)
×
(
Ω× (ψ ·ψ) − (Ω×ψ) · (Ω×ψ)

))
×
(
∆logA ·∆logA

)
.

GDP change in matrix form. In matrix form, we can rewrite Equation (19) as

∆logy = λ×∆logA + .5
(

(θ − 1) ·λ
)
×
(

Covar1 −Covar2
)

+

.5
((

(θ − 1) ·λ
)
×
(
Ω× (ψ ·ψ) − (Ω×ψ) · (Ω×ψ)

))
×
(
∆logA ·∆logA

)
(21)

E.2 Numerical implementation in Python

Numerical implementations of our simulations are challenging due to the sheer size of the firm-to-
firm trade network. We have data on 93,260 firms across 1293 product categories. This generates a
94,555 by 94,555 input-output matrix. The elements inside the input-output matrix are small as the
fraction of a product’s output to a single firm is small and, in turn, each product category sources
from a large number of suppliers. To maintain calculations as precise as possible, we used f loat64
variable types within these matrices. Nevertheless, this also drastically increased the amount of
computer memory required to hold matrices. For instance, the Leontief inverse matrix required
more than 66GB of storage/memory size.
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These large matrices require many steps to perform matrix multiplication operations on them.
In computer science, matrix multiplication is one of the most demanding operations in terms of
computing resources. We break down these operations by leveraging state-of-the-art computing
techniques in big data. These techniques provide us with scalability when applying them to arbi-
trarily large input-output matrices. As detailed firm-to-firm transaction data are becoming more
widely available, these techniques are promising to advance the literature on quantifying the prop-
agation of shocks through firm networks. We now briefly describe these techniques.

First, we fit datasets larger than RAM using Dask, which is a Python library with multi-core,
distributed, and parallel execution on larger-than-memory datasets.39 We use Dask’s distributed
capabilities to parallelize our calculations when computing second-order effects which require few
matrix multiplication operations on large 94,555 by 94,555 matrices.

Second, we use a computer powered by multiple GPUs. GPUs are essential for performing
a large number of matrix multiplications. For example, computing 10 columns of the Leontief
inverse matrix, which is only around 0.0001% of columns we need to compute, takes about 4 days
on a powerful server with multiple CPUs, 500 GB of RAM, and 16 cores. Computing the entire
Leontief inverse on a server powered with 4 GPUs takes about 1 hour.

Third, we use the properties of sparse matrices to define matrix multiplications that ignore
large contiguous sub-matrices full of zeros, which is a typical feature of input-output matrices.

Fourth, we developed a custom matrix multiplication function to overcome the limitation of
the relatively small memory size of GPUs. The custom matrix multiplication function splits the
matrix into sub-matrices of full columns (typically in the order of a few 1000’s of columns), it
multiplies the sparse input-output matrix by each sub-matrix, and it concatenates all result chunks
to formulate the final result.

39https://tutorial.dask.org/00_overview.html
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